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Abstract

This thesis is based on five papers, which all analyse different aspects of splitting schemes
when applied to nonlinear parabolic problems. These numerical methods are frequently
used when a problem has a natural decomposition into two or more parts, as the compu-
tational cost may then be significantly decreased compared to other methods. There are
two prominent themes in the thesis; the first concerns convergence order analysis, while
the second focuses on structure preservation.

To motivate the first theme, we note that even if a method has been shown to converge
it might be that the speed of convergence is arbitrarily slow. As such a method is unusable
in practice we see that it is essential to prove convergence orders. However, those stud-
ies that present such error analyses in the fully nonlinear setting typically assume more
regularity of the solution than what should be expected. In this context, we present a
convergence order analysis for a class of splitting schemes which, importantly, does not
require any artificial regularity assumptions. This analysis is carried out in the setting of
m-dissipative operators, which includes a large number of interesting problem classes. As
demonstrated by the first three papers, the theory can be applied to such diverse problems
as nonlinear reaction-diffusion systems, nonlinear parabolic problems with delay, as well
as differential Riccati equations.

Within the second theme of structure preservation, an in-depth study of operator-
valued differential Riccati equations has been carried out. In such equations it is desirable
for a numerical method to produce positive semi-definite approximations. Further, it is
essential that an implementation can utilize the problem-inherent property of low rank.
As shown in the last three papers, both these features are readily satisfied for various split-
ting schemes. Since these are additionally less costly than existing comparable methods,
they constitute a particularly competitive choice for such problems.
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Populärvetenskaplig
sammanfattning

Genom observationer och experiment kan man konstruera modeller för att beskriva otal-
iga fenomen och aspekter av det universum vi lever i. Den huvudsakliga ingrediensen i
en dylik modell är ofta en partiell differentialekvation. Sådana ekvationer kan beskriva
så vitt skilda fenomen som t.ex. hur galaxer bildas, hur luftflöden transporteras i atmos-
fären, hur kemikalier reagerar med varandra, eller hur atomer interagerar på kvantnivå.
Ofta används linjära modeller, då de är relativt enkla och har studerats intensivt. I den här
avhandlingen intresserar vi oss dock för ickelinjära ekvationer. Eftersom många naturliga
fenomen är ickelinjära kan dessa beskriva verkligheten bättre än linjära ekvationer.

Att beskriva ett system med en ekvation är en sak, men för att använda modellen till
att förutsäga vad som kommer att hända i olika situationer måste den också lösas. De ek-
vationer som beskriver komplicerade processer likt de ovan nämnda har dock sällan några
lösningar som man kan beräkna genom ett ändligt antal matematiska operationer. Istäl-
let måste man hitta tillräckligt bra approximationer, uppskattningar, till dessa lösningar.
En stor del av numerisk analys handlar om att konstruera, analysera och implementera
metoder för att beräkna sådana approximationer. I den här avhandlingen har fokus varit
på att analysera, och till viss del implementera, en viss typ av numeriska metoder som
kallas splitting-metoder.

Idén bakom en splitting-metod är väldigt enkel; dela upp problemet i två eller fler
delar och approximera deras lösningar separat. Använd sen dessa delapproximationer för
att konstruera en approximation till lösningen av hela problemet. Om delproblemen är
enklare att hantera än det ursprungliga problemet (t.ex. om man exakt vet delproblemens
lösningar) så kan detta leda till en kraftig minskning av den datorkraft som krävs.

Att en numerisk metod är snabb betyder dock inte nödvändigtvis att den är bra,
utan man måste fråga sig hur noggranna approximationer den producerar. En central
frågeställning är hur approximationsfelet beror av hur mycket arbete man investerar. Om
mer datorkraft inte resulterar i en bättre approximation så är metoden inte särskilt bra.
Huvudtemat i den här avhandlingen har därför varit att visa så kallade konvergensord-
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ningar för splittingmetoder. Detta betyder att man t.ex. kan garantera att en dubblering
av arbetsinsatsen resulterar i en halvering av felets storlek.

Sådana felanalyser för splittingmetoder har gjorts tidigare i litteraturen, men under
antaganden på problemen som i det ickelinjära fallet inte är fullt realistiska eller utes-
luter intressanta fall. Via det nya tillvägagångssättet som beskrivs i den här avhandlingen
kan man dock utföra rigorösa felanalyser även under minimala antaganden. Teorin som
presenteras är också applicerbar på många olika klasser av ickelinjära problem.

Utöver detta huvudspår så har en del av avhandlingen fokuserat på strukturbevarande
numeriska metoder. I t.ex. en kemisk reaktion så kan man självklart inte ha negativa
koncentrationer av något ämne. En metod borde därför producera approximationer där
alla koncentrationer är positiva. En sådan metod bevarar då strukturen positivitet. I den
här avhandlingen har så kallade differentiella Riccati-ekvationer studerats, vilkas lösningar
uppvisar vissa strukturer som bör bevaras. Splitting-metoder har tidigare inte tillämpats
på denna typ av ekvationer, men våra resultat indikerar att de är mycket väl lämpade för
att bevara dessa strukturer. Då de även är effektivare än existerande jämförbara metoder
så är de inom detta område mycket lovande metoder.
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Chapter 1

Introduction

A vast number of physical phenomena can be described by partial differential equations
(PDEs), from large-scale processes such as galaxy formation or atmospheric flows to small-
scale processes such as pattern-formation on animal hides or the quantum-mechanical
interaction between particles. Constructing, implementing and analyzing methods for
approximating the solutions to such complicated problems is a major branch of numerical
analysis.

The kind of PDEs we are interested in in this thesis are nonlinear parabolic problems.
These contain one time-derivative and two spatial derivatives. In the linear case, the
prototypical parabolic problem is the heat equation u̇ = ∆u, which e.g. models the
diffusion of heat throughout a homogeneous medium. In many cases, this model is too
simplistic. For example, the diffusion of heat in a plasma or the flow of gas or water in a
particular porous medium should rather be modelled by a nonlinear equation of the form
u̇ = ∆α(u). A typical function α could be α(u) = |u|ru with r > 0, which means that
the diffusive effect increases with the magnitude of u.

Usually, of course, a physical process involves more than just diffusion. As a concrete
example, let us consider a semilinear reaction-diffusion equation given by

u̇k = ∆uk +Gk(u1, . . . , us), k = 1, . . . , s.

Here, uk denotes the concentrations of s different chemicals that diffuse separately and
interact according to the coupling terms Gk. The interaction could for example involve
the production of one substance from a combination of two others in the presence of
a third substance acting as a catalyst. It might be that the diffusivity depends on the
concentrations of the reactants, or that the process takes place in a non-homogeneous
medium. In this case, the semilinear problem turns into a fully nonlinear problem as in
the previous paragraph.

By instead considering uk to be the population densities of different animal species,
the above equation could also be interpreted in the context of population dynamics. Then
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2 CHAPTER 1. INTRODUCTION

the diffusive terms would describe dispersal and migration throughout a habitat, and the
reaction term would describe the interaction between predators and prey as well as the
population increase or decrease due to births and deaths. In this context, a nonlinear
diffusion term naturally captures the desire to avoid overcrowding; when the population
density increases, the rate of diffusion increases.

Such problems are particularly well suited for splitting schemes. These numerical
methods approximate the solution to a problem by decomposing it into parts and working
with each part separately. In the example above, a splitting scheme would iterate between
the subproblems

u̇k = ∆uk and u̇k = Gk(u1, . . . , us).

The benefit here is twofold. Firstly, one may use tailored methods for each subproblem.
In this case, the diffusive terms are stiff, which requires an implicit method. On the
other hand, the reaction term is frequently non-stiff and an explicit method could be
used for this subproblem. Secondly, the system decouples, so that one may parallellize
the approximation of the subproblems. The end result is a numerical method which is
less costly than applying an implicit method to the full problem. The next chapter gives
an overview of different splitting schemes.

The main goal of this thesis is to analyze splitting schemes for fully nonlinear parabolic
problems. Within this broad statement, two main themes are in focus; convergence order
analysis and structure preservation.

1.1 Convergence order analysis

Consider the discretization of a PDE by a numerical method. As the examples above
indicate, we focus on temporal discretizations and let the spatial part of the problem
remain continuous. Thus the temporal results are independent of a subsequent spatial
discretization and can serve as a building block for the analysis of full discretizations.

To consider any numerical method at all, clearly it must be convergent. That is, if
h > 0 denotes the mesh width of a (equidistant) temporal discretization and un approx-
imates the exact solution at the fixed time nh then we must have

∥un − u(nh)∥ → 0 as h → 0

for a suitable norm ∥·∥. However, this convergence could be arbitrarily slow, leading
to a method that works in theory but not in practice. It is therefore essential to show
convergence with an order, i.e.

∥un − u(nh)∥ ≤ Chp, (1.1)

for positive constants C and p.
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In this context, one has to carefully consider what abstract framework to use. That is,
we ask:

What vector fields do we allow and in what spaces are they defined?

One approach is to take a specific problem or problem class, such as the reaction-diffusion
equations, and tailor the analysis to a specific space. Another approach, used here, is to
identify the crucial properties that different interesting problems have in common, and
to employ general arguments to simultaneously show results for all of them. While the
former approach might result in e.g. improved error bounds, with the right framework
the latter can be surprisingly effective. In this thesis, we consider the powerful setting of
m-dissipative operators, which includes many interesting problem classes. An overview is
given in Chapter 3.

As indicated by the literature overview in Chapter 2, most convergence order studies
make regularity assumptions on the exact solution. In the fully nonlinear case, these
assumptions are frequently excessive, i.e. such regularity cannot be guaranteed. In view
of this, the first aim of the thesis can be summarized as:

Aim. To prove convergence orders for splitting schemes applied to fully nonlinear parabolic
equations, under no artificial regularity assumptions.

The main contribution within this area is outlined in Chapter 4. This consists of
the material in Papers I-III, which prove convergence orders for several diverse problem
classes and demonstrate the benefits of splitting schemes in these contexts. The current
exposition unifies the treatments in these papers and also generalizes their results to a
certain extent.

1.2 Structure preservation

To describe structure preservation, we note that it is often not enough that a method
converges, it also has to produce approximations that mimic the features of the exact
solution. In the above examples, clearly a chemical concentration or a population density
cannot be negative. Thus a numerical approximation that does not preserve positivity is
undesirable. Other features one might want to preserve are global invariants such as mass
or energy or local features such as area or volume. In this context, we ask:

What numerical methods are suitable for preserving a given feature of a problem?

In contrast to the first theme, this is naturally a problem-specific question, and we thus
also consider it for a specific problem class, namely the differential Riccati equations.
For these problems, the (operator-valued) solutions are positive semi-definite, and it is
desirable for a method to preserve this feature. For implementation reasons, it is also
essential to preserve the feature of low rank. The second aim of the thesis can thus be
summarized as:
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Aim. To do an in-depth study of splitting schemes applied to differential Riccati equations
with the goal of preserving positivity and low-rank structure.

The main contribution within this area is outlined in Chapter 5. This contains ma-
terial from Paper IV and V, which show that exponential splitting schemes are well suited
to the given task, in addition to being more efficient than comparable methods.



Chapter 2

Splitting schemes

Let us formally consider the equation

u̇ = (F +G)u, u(0) = u0, (2.1)

where F is typically a nonlinear diffusion operator and G is a reaction term. The main
idea behind splitting schemes is that numerically approximating the solutions to the sub-
problems

u̇ = Fu and u̇ = Gu (2.2)

can be significantly cheaper and/or easier than for the full problem (2.1). A splitting
method will iterate between solving the different subproblems, and combine the approx-
imations to an approximation for the full problem.

In the following, we denote by etEu0 the solution to u̇ = Eu, u(0) = u0. This
is an extension of the notation commonly used for linear ordinary differential equations
(ODEs) and will be motivated in the next chapter. For now, we note that etE is a poten-
tially nonlinear operator, and as such does not commute with E.

2.1 Basic ideas

As a first example, consider the exponential Lie splitting. The time-stepping operator for
this method is given by

Sh = ehF ehG,

and the approximation un to u(nh) is given by the recursion formula un+1 = Shu
n

with u0 = u0. In other words, one step of the method is given by

v̇ = Gv, v(0) = un

ẇ = Fw, w(0) = v(h),

5



6 CHAPTER 2. SPLITTING SCHEMES

and un+1 = w(h). This should be contrasted to the operator eh(F+G) for the exact
solution, which utilizes the full vector field.

By combining the subproblem solutions in better ways, one constructs more accurate
methods. For example, the second-order Strang splitting [84] is given by

Sh = eh/2F ehGeh/2F .

More generally, the time-stepping operators

Sh =

m∏
k=1

eαkhF eβkhG

where αk and βk are chosen appropriately [38, 52, 69, 74] yield exponential splitting
methods of higher order.

The above methods all employ the exact solutions to the subproblems. If known
analytical expression for these do not exist, one may still use numerical methods to ap-
proximate them, as long as their errors are negligible compared to the error introduced by
the splitting. Alternatively, one may directly analyze “full” splitting methods such as the
(non-exponential) Lie splitting scheme, or the IMEX (implicit explicit) Euler method [52,
Chapter IV.4], given by

Sh = (I − hF )−1(I − hG)−1 and Sh = (I − hF )−1(I + hG),

respectively. These should be contrasted to the implicit Euler and explicit Euler methods
given by (I − h(F +G))−1 and I + h(F +G). Even if G is non-stiff, a stiff F would
prevent using explicit Euler on the full problem, while the use of implicit Euler would
frequently be costly. In such a case, IMEX-type schemes are competitive since they only
employ the implicit method where strictly necessary. Furthermore, as in the reaction-
diffusion example in the introduction, the evaluation of the subproblems may often be
parallellized.

For an introductory survey of splitting methods, we refer to Hundsdorfer and Ver-
wer [52], which also covers several other kinds of splitting methods. See also the survey
article [69]. In view of the first aim of the thesis, to prove convergence orders for splitting
schemes, let us now consider what has been done in the literature.

2.2 Finite-dimensional error analysis

Consider first the ODE case, i.e. equations given on a finite-dimensional space such as
Rn. Then order conditions for both one-step and multistep methods such as Runge–
Kutta or backward differentiation formula (BDF) methods are presented in e.g. the classic
books [39, 40]. These are based on expanding both the exact solution and the numerical
approximation in Taylor series and then determining the method coefficients such that
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the terms match up to the desired order. A systematic approach for doing such expansions
in a reasonably clean fashion, also for high orders, was mainly introduced by Butcher (for
Runge-Kutta methods) and is therefore referred to as the B-series approach. See [16, 39]
for an overview.

The same approach can be used for exponential splitting methods. To give a concrete
elucidating example, consider the exponential Lie splitting scheme in the linear case.
Then F = A and G = B are matrices in RN×N and we can expand ehA and ehB as
well as eh(A+B) in their power series to verify that

eh(A+B) − ehBehA = I + h(A+B) + h2/2(A2 +AB +BA+B2) +O(h3)

−
(
I + hB + h2/2B2 +O(h3)

)(
I + hA+ h2/2A2 +O(h3)

)
= h2/2

(
AB −BA

)
+O(h3).

Thus eh(A+B)un − ehBehAun = O(h2) as A and B are bounded operators, and the
scheme is consistent of order p = 1. Since

∥ehAehB∥ ≤ eh(∥A∥+∥B∥),

the scheme is also stable, and hence it is first-order convergent. In the case that F and
G are nonlinear, then one may still expand the flows in Taylor series and show a O(h2)
local error that now depends on the bounded operators dF

duG and dG
du F . See e.g. [52] for

further details. For high orders, B-series may again be used, and we refer to [74], see also
the related [18].

2.3 Infinite-dimensional error analysis

In the parabolic case, F and G will typically be unbounded operators on a Banach space.
Then the above approach immediately fails, as the Taylor expansions no longer necessarily
converge. This can be overcome in different ways. We consider first the case when both
F and G are linear.

The linear case

For exponential splitting schemes, it was shown in [45] that the classical orders derived
in the ODE setting remain valid under certain regularity assumptions on the solution to
the full problem. Essentially, for order p, one needs to be able to apply a combination
of p + 1 F ’s and G’s to u(t) and have the result be uniformly bounded over the inte-
gration interval. That is, for first-order convergence e.g. F 2u(t) needs to be uniformly
bounded for t ∈ [0, tend]. Under similar assumptions, [25] considers partially time-
dependent equations and shows convergence orders for IMEX-type multistep methods.
For an introductory reading on analysis of other methods for linear parabolic problems,
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such as Runge–Kutta or multistep methods, see e.g. [53, 61, 93]. These also consider full
discretizations, i.e. both temporal and spatial discretizations.

Sufficient regularity of the solution to the full problem may be guaranteed by assum-
ing high regularity of the initial condition. This is e.g. used in [85, p.57] to prove first-
order convergence of the implicit Euler method. Similar assumptions are made in [44],
where convergence orders for various first- and second-order splitting schemes are estab-
lished for a wide class of operators. In [54], regularity assumptions are avoided but instead
G is supposed to be bounded, and terms such as FG should be bounded by powers of F .
In this setting, the classic convergence orders for exponential Lie and Strang splitting are
shown to remain valid. Under similar boundedness assumptions, W-methods [40, IV.7]
are shown to converge with orders in [76].

The semilinear case

The semilinear case, i.e. F is linear and G is nonlinear, needs additional requirements
on G. If the solution is sufficiently regular and G is smooth then the implicit Euler and
Crank–Nicolson methods converge with orders [93]. Under the same regularity assump-
tion but with G only locally Lipscitz, convergence orders for Runge–Kutta methods were
established in [67].

A Lipschitz-type assumption on G was again used to prove classical convergence or-
ders for several different splitting schemes in [2, 3], under the assumption that the solu-
tion is smooth. Other splitting methods for reaction-diffusion problems, where F = ∆,
are treated in e.g. [29] and [34] under the assumption that G is a scalar function and
sufficiently differentiable. Splitting methods for the time-dependent case and also with
more than two operators was considered in [86] under the assumption that G is dis-
sipative, but without showing convergence orders. IMEX-type schemes are considered
in [26, 60] along with spatial discretizations, and are shown to converge with orders un-
der smoothness or local Lipschitz assumptions on G, but without regularity assumptions
on the initial condition.

Extensions to the quasilinear case of operators of the form Fu = α(u)Au or Fu =
B(u)u, with A and B(u) linear, have been considered in e.g. [37, 68] for Runge–Kutta
methods, in [62] for multistep methods and in [93, Chapter 13] for methods combined
with Galerkin spatial discretizations.

The nonlinear case

The literature in the fully nonlinear case is more sparse, even when considering methods
that are not of splitting-type. In the case that a linearization can be done, semilinear
techniques can be employed. This approach has been used to prove convergence or-
ders for the implicit Euler scheme [36], Runge–Kutta methods [77], as well as multistep
methods [78]. In the variational setting, weak convergence has been shown for multistep



2.3. INFINITE-DIMENSIONAL ERROR ANALYSIS 9

methods in [31, 32] and for Runge–Kutta methods in [33]. Convergence orders for mul-
tistep and Runge–Kutta methods applied to m-dissipative vector fields has been shown
in [41, 42], under regularity assumptions on the solution.

In the splitting case, convergence without orders was shown for the Lie and expo-
nential Lie splitting schemes in [14] in the setting of dissipative operators on Hilbert
spaces. The main tool to extend these results to the Banach space setting is given by [15,
71], which provides stability and consistency criteria for convergence of general time-
stepping schemes. These results were e.g. utilized by [64] for the Peaceman- and Douglas–
Rachford schemes, and developed further in [46] for several other methods, with appli-
cations to quasi-linear dimension splitting. An alternative approach based on viscosity
solutions was employed in [55] to demonstrate convergence with an order for the scheme
ehF (I + hG) applied to a class of nonlinear strongly degenerate parabolic equations.

It should also be noted that there has been many studies of splitting methods ap-
plied to specific problem classes, e.g. conservation laws [20, 21, 49, 90], convection
perturbed by diffusion [56, 57], semilinear Burgers-type problems [50, 51], Schrödinger
equations [35, 65, 91, 92] and Navier–Stokes equations [87, 88].





Chapter 3

Framework of m-dissipative
operators

We consider now the abstract problem

u̇ = Eu, u(0) = u0, (3.1)

where E denotes a generic operator that could be F , G or F + G. We need to specify
what kind of operators E can represent, and in which sense they should be analysed.

For problems dominated by convection, one may utilize the framework of entropy
or viscosity solutions, advocated by e.g. Holden et.al. We refer to [17, 22] for an intro-
ductory reading on these kinds of solutions with basic existence and uniqueness results.
A recent survey of the field, in the context of splitting methods, is given by Holden
et.al. [49] and includes an extensive bibliography.

For parabolic problems, a common approach is the variational setting. There, the
operators are treated as bounded operators from one space into its dual. For example,
the variational treatment of the Dirichlet Laplacian would be ∆ : H1

0 (Ω) → H−1(Ω).
We refer to Roubíček [81], Zeidler [96] and Thomée [93]. This approach has natural
connections to Galerkin methods, and can easily be adapted to treat time-varying vector
fields. However, it is most suited to Hilbert space theory and tends to produce weakly
convergent approximations since one of the main techniques is based on compactness.

An alternative approach for parabolic problems is that of m-dissipative operators, see
e.g. Barbu [6, 7] for the nonlinear case or Pazy [79] for the linear case. In contrast to
the variational setting, here the operators are considered to be unbounded and defined
on a subset of a Banach space. For example, the Dirichlet Laplacian is seen as an oper-
ator ∆ : H2(Ω) ∩ H1

0 (Ω) ⊂ L2(Ω) → L2(Ω). As we shall see, a main benefit of this
approach is the possibility of deriving convergence order results under only minimal regu-

11
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larity assumptions on the initial condition. Additionally, it allows for a natural treatment
of nonlinear operators on e.g. Lr(Ω) with r ̸= 2.

3.1 m-dissipative operators

Let us therefore consider Equation 3.1 as given on the Banach space (X, ∥·∥) with an
unbounded and possibly nonlinear operator E.

Definition 1. An operator E : D (E) ⊂ X → X is dissipative if for all h > 0 and
u, v ∈ D (E) it holds that

∥(I − hE)u− (I − hE)v∥ ≥ ∥u− v∥.

If there is a constant M [E] ≥ 0 such that E − M [E]I is dissipative, we say that E is
shift-dissipative with the shift M [E]. Finally, E is (shift-)m-dissipative1 if in addition

R (I − hE) = X

for all h > 0 such that hM [E] < 1.

Example 1 (Linear m-dissipative operator). Let Ω be a bounded domain in Rd with a
sufficiently regular boundary. Then the Laplacian,

Eu = ∆u,

with homogeneous Dirichlet, Neumann or periodic boundary conditions, is m-dissipative
on L2(Ω). The dissipativity follows easily from integration by parts (using Proposition 1
on page 19), while the range condition can be shown using e.g. the Lax-Milgram theorem
and regularity arguments, see e.g. [13, Chapters 8.4, 9.5] or [79, Chapter 7.2].

Example 2 (Nonlinear m-dissipative operators). Again let Ω be a bounded domain in
Rd with a sufficiently regular boundary. Then the nonlinear r-Laplacian (usually called
p-Laplacian) is given by

Eu = ∇ · (|∇u|r∇u)

for r > 0. This operator, along with suitable boundary conditions, is m-dissipative on
L2(Ω).

1In the context of Hilbert spaces, the concept of m-dissipative operators coincides with that of maximal
dissipative operators. In the latter setting, the operators are identified with their graphs and treated as sets in
X×X . The “maximal” then means that the graph cannot be extended to a larger dissipative set. In the Banach
space setting, both concepts are still valid, but they are no longer necessarily the same. Hence the new name,
where the m is related to “maximal” but should rather be read as I − hE having “maximal range”. We will
stick with the m-dissipative formalism throughout.
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A second nonlinear example is the porous medium operator, given by

Eu = ∆(|u|ru)

with r > 0. This operator, with homogeneous Dirichlet boundary conditions, is m-
dissipative on L1(Ω) or H−1(Ω). For both of these operators, the verification of m-
dissipativity is highly nontrivial. We refer to e.g. [7, p.68ff, p.117ff] and [81, p.101ff,
p.105ff].

As these examples show, many interesting applications fit into the framework. Let us
therefore turn to the consequences of these properties.

3.2 A theorem by Crandall and Liggett

If E is m-dissipative, then the resolvent

Rh := (I − hE)−1 : X → D (E) ⊂ X,

where h > 0, is well defined. By the dissipativity, we further get that

∥Rhu−Rhv∥ ≤ ∥u− v∥,

i.e. the resolvent is nonexpansive. Together, the range condition and dissipativity thus
guarantees that for all v ∈ X the equation

(I − hE)u = v

has a unique solution u ∈ D (E). From a numerical analysis point of view, this means
that the implicit Euler scheme given by

un+1 = Rhu
n, u0 = u0,

is well defined for all initial conditions u0 ∈ X and step sizes h. With the particular step
size h = t/n, the value un = Rn

t/nu0 approximates the solution to Equation (3.1) at
time t. While these approximations are well defined for all n, it does not follow directly
that they converge as n tends to infinity. However, we will see in Theorem 1 that they do
converge when u0 ∈ D (E).

Let us first note that the m-part of the m-dissipativity can be relaxed. If R (I − hE)
contains D (E), the resolvent is defined and nonexpansive as a mapping from D (E) to
D (E). This would make the terms Rn

t/nu0 well defined for u0 ∈ D (E). However, even
if the sequence converges as we let n tend to infinity, we can only guarantee that the limit
ends up in D (E). This motivates the following range condition, which yields a resolvent
Rh mapping D (E) into itself for all h > 0:
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Assumption 1. For all h > 0, the operator E : D (E) ⊂ X → X satisfies

D (E) ⊂ R (I − hE) .

It is also sufficient with only shift-dissipativity:

Assumption 2. The operator E : D (E) ⊂ X → X is shift-dissipative.

Under these assumptions, we can now state the following convergence theorem by
Crandall and Liggett [23]:

Theorem 1. Let E satisfy Assumptions 1 and 2. Then the limit

etEu0 := lim
n→∞

Rn
t/nu0

exists for all u0 ∈ D (E) and t ≥ 0, and the operator etE : D (E) → D (E) is nonexpan-
sive for all t ≥ 0. Further, for all u0 ∈ D (E) it holds that e(t+s)Eu0 = etEesEu0 and
t 7→ etEu0 is Lipschitz continuous2 on t ≥ 0. Finally, for n ≥ 2M [E]t and u0 ∈ D (E)
we have

∥etEu0 −Rn
t/nu0∥ ≤ 2te4M [E]tn−1/2∥Eu0∥. (3.2)

Remark 1. In other words, the implicit Euler scheme converges for all u0 ∈ D (E).
Moreover, if u0 ∈ D (E) then the method converges with an order, p = 1/2. The latter
unexpected and remarkable fact is one of the cornerstones of our convergence analysis.

In the case of e.g. X = RN , the function etEu0 defined in Theorem 1 is a (clas-
sical) solution to Equation 3.1. In the current infinite-dimensional setting, this is not
necessarily true, but we may still consider it as a more general type of solution:

Definition 2. The (Lipschitz) continuous function

u(t) := etEu0 (3.3)

defined by Theorem 1 is called a mild solution to Equation (3.1).

This should be contrasted to the following concept of solution to Equation 3.1, called
strong solutions by e.g. Barbu [7] and Pazy [79].

Definition 3. A strong solution u to (3.1) belongs to C
(
[0, tend], X

)
for a given tend > 0

and is differentiable almost everywhere with u̇ ∈ L1
(
0, tend ;X

)
. Further, it satisfies

u(0) = u0 and u̇ = Eu almost everywhere.

The concept of a mild solution is further motivated by Theorem II of [23] which
asserts that if a mild solution is sufficiently regular, then it is in fact a strong solution:

2Thus etE is a semigroup of contractions on D (E).
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Theorem 2. In addition to the assumptions of Theorem 1, let E be closed and u0 ∈ D (E).
Then if etEu0 is differentiable almost everywhere it is a strong solution to Equation (3.1).

The following corollary is immediate from the fact that all Lipschitz continuous func-
tions on a reflexive Banach space are differentiable almost everywhere (more generally, on
a Banach space with the Radon–Nikodym property):

Corollary 3. Let X be reflexive. Under the assumptions of Theorem 2, etEu0 is a strong
solution to Equation (3.1).

Conversely, if E is m-dissipative then every strong solution u to (3.1) satisfies u(t) =
etEu0 [7, p.130]. The mild solutions are therefore a natural generalization of the strong
solutions.

3.3 Proof sketch

We now return to Theorem 1 and its proof, which will be used in the forthcoming conver-
gence analysis of the splitting methods. For the convenience of the reader, we therefore re-
produce select parts of it here. We have already seen that the resolvent Rh = (I−hE)−1

is nonexpansive if E is dissipative. If E is only shift-dissipative then the resolvent is no
longer necessarily nonexpansive. However, as the next Lemma demonstrates, it is still
Lipschitz continuous.

Lemma 4. Let E satisfy Assumption 1 and 2. Then for all u, v ∈ D (E), positive integers
n and positive h such that hM [E] < 1, the resolvent Rh satisfies

1. ∥Rhu−Rhv∥ ≤ 1
1−hM [E]∥u− v∥,

2. ∥Rn
hu−Rn−1

h u∥ ≤ h
(1−hM [E])n ∥Eu∥ and

3. ∥Rn
hu− u∥ ≤ nh

(1−hM [E])n ∥Eu∥.

The first property also holds for u, v ∈ D (E).

Proof. Property 1 is evident from E being shift-dissipative. Property 2 follows from
property 1 and the identity

Rn
hu−Rn−1

h u = Rn
hu−Rn

h(I − hE)u.

For property 3, we have by property 2 that

∥Rn
hu− u∥ ≤

n∑
k=1

∥Rk
hu−Rk−1

h u∥ ≤
n∑

k=1

h∥Eu∥
(1 − hM [E])k

≤ nh

(1 − hM [E])n
∥Eu∥,

since 0 < 1 − hM [E] < 1.
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We also have the nonlinear resolvent identity:

Lemma 5. Let E satisfy Assumptions 1 and 2. Then for all λ, µ > 0 and v ∈ R (I − λE),

µ

λ
v +

λ− µ

λ
Rλv ∈ R (I − µE) and

Rλv = Rµ

(µ
λ
v +

λ− µ

λ
Rλv

)
Proof. Let u = Rλv. Then

µ

λ
(I − λE)u+

λ− µ

λ
u = (I − µE)u,

and the lemma follows immediately.

Lemma 6. Let E satisfy Assumption 1 and 2 and let u0 ∈ D (E). Then with t > 0 and
sufficiently large positive integers n ≥ m we have

∥Rn
t/nu0 −Rm

t/mu0∥ ≤ 2te4M [E]t
( 1
m

− 1
n

)1/2
∥Eu0∥. (3.4)

Proof sketch. Following [23], define

am,n = ∥Rn
µu0 −Rm

λ u0∥.

for λ ≥ µ > 0 and λM [E] < 1/2. Then by rewriting Rm
λ u0 = RλR

m−1
λ u0 and using

Lemma 5 we get

am,n ≤ µ

λ
am−1,n−1 +

λ− µ

λ
am,n−1. (3.5)

As indicated in Figure 3.1, we can solve this recursion in terms of ak,0 and a0,k:

am,n ≤
m−1∑
j=0

αjβn−j

(
n

j

)
am−j,0 +

n∑
j=m

αmβj−m

(
j − 1
m− 1

)
a0,n−j ,

where α = µ
λ and β = λ−µ

λ . In view of the third property of Lemma 4, in the case
M [E] = 0 this reduces to

am,n ≤
m−1∑
j=0

αjβn−j

(
n

j

)
(m− j)λ∥Eu0∥+

n∑
j=m

αmβj−m

(
j − 1
m− 1

)
(n− j)µ∥Eu0∥,

which becomes

am,n ≤
(√

(nµ−mλ)2 + nµ(λ− µ) +
√
(nµ−mλ)2 +mλ(λ− µ)

)
∥Eu0∥
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m

n

1α3β0

4α3β1

10α3β2

20α3β3

1α2β0

3α2β1

6α2β2

10α2β3

15α2β4

1α1β0

2α1β1

3α1β2

4α1β3

5α1β4

6α1β5

1α0β0

1α0β1

1α0β2

1α0β3

1α0β4

1α0β5

1α0β6

1α4β0

4α4β1

10α4β2

a4,6

Figure 3.1: Illustrating the Crandall–Liggett proof of Theorem 1. By the recursion formula (3.5), the
term a4,6 is first bounded by αa3,5+βa4,5. Each of these terms then give rise to two new terms, indicated
by the arrows. Every diagonal movement generates a factor α and every downward movement generates
a factor β. Going down and then diagonally yields a factor αβ which is the same result as when going
diagonally then down, and we can thus sum these terms. The numbers indicate the total number of the
different αiβjak,l terms. We stop when we reach the coordinate axis. In this case, we will have e.g. the
terms 4α4βa0,1 and 15α2β4a2,0 left.

after using a few combinatorial identities that we omit here, see [23]. The lemma then
follows by setting µ = t/n and λ = t/m. If M [E] > 0, we will additionally get terms
of the form (1 − M [E]µ)−n or (1 − M [E]λ)−n. However, due to the assumption
M [E]λ < 1/2, these can be bounded by e.g. e2M [E]nµ = e2M [E]t, which yields the
factor e4M [E]t in Equation (3.4).

The sequence Rn
t/nu0 is thus a Cauchy sequence, so we can let n tend to infinity

to obtain Equation (3.2). The rest of the proof of Theorem 1 consists of verifying that
etE actually is a semigroup, and using the Lipschitz continuity to demonstrate that it
is defined also on D (E). The Lipschitz continuity of t 7→ etEu0 follows from taking
µ = t/n and λ = s/n and letting n tend to infinity. We omit these details.

Remark 2. One might suspect that the above proof could be modified to show conver-
gence with an order also for the Lie splitting scheme Sh = (I − hF )−1(I − hG)−1

if F and G are both m-dissipative. Then Sh satisfies all the conclusions of Lemma 4.
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However, it does not quite satisfy the resolvent identity. Instead, we get

Sλu = Sµ

(µ
λ
u+

λ− µ

λ
Sλu− µ(λ− µ)GFSλu

)
,

and with am,n = ∥Sn
µu− Sm

λ u∥ this leads to the modified recursion formula

am,n ≤ µ

λ
am−1,n−1 +

λ− µ

λ
am,n−1 + µ(λ− µ)∥GFSm

λ u∥.

Solving this recursion yields

am,n ≤
m−1∑
j=0

αjβn−j

(
n

j

)
am−j,0 +

n∑
j=m

αmβj−m

(
j − 1
m− 1

)
a0,n−j

+

m∑
j=1

1
λ2

∥GFSj
λu∥α

m+1−j

j+1∑
k=0

(
k +m− j

k

)
βk+1,

and even assuming that the ∥GFSj
λu∥ terms are uniformly bounded, the 1/λ2 factor,

essentially n2, grows too quickly to achieve a bound similar to those of the other terms.
The proof is thus very delicate and specifically tailored for the implicit Euler method.

Remark 3. The implicit Euler method is usually said to be a first-order method, i.e. that
it is convergent of order p = 1. The claim in Theorem 1 that we have convergence of
order p = 1/2 might therefore seem underwhelming. Indeed, if we take e.g. X = RN

or restrict the class of operators further, we do recover first-order convergence. However,
in the presented setting and under no additional assumptions, Theorem 1 is sharp. This
is e.g. demonstrated in [82], where a class of problems is constructed such that the con-
vergence order comes arbitrarily close to p = 1/2. The result of a numerical verification
of this is shown in Figure 3.2, which demonstrates convergence of order p = 0.55. Con-
vergence orders p < 1 were also observed in Paper I, Example 2, for a splitting method
applied to a perturbed version of this problem.

3.4 Semi-inner products and Hilbert spaces

Corollary 3 shows that all mild solutions are strong solutions if u0 ∈ D (E) and X is
reflexive. In general, the more structure X has, the stronger results can be shown. If
the underlying space is a Hilbert space, one may show that m-dissipative operators are in
one-to-one correspondence with the semigroups of contractions. That is, not only does
every m-dissipative operator give rise to a semigroup, but every semigroup of contractions
arises from an m-dissipative operator. While this result is interesting from a theoretical
viewpoint, from a numerical analysis point of view we always know the operator and
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10−5 10−4 10−3 10−2 10−1 100

h

10−5

10−4

10−3

10−2

E
rr

or

IE

Ch0.55

Figure 3.2: The result of a numerical verification of Example 3 in [82]. Here X = ℓ2, G = 0 and

F (u1, u2, . . . , u2j−1, u2j , . . .) = (u2,−u1, . . . , ju2j ,−ju2j−1, . . .).

To provoke low-order convergence behaviour, the initial condition u(0) = {1/j1.51}∞j=1 is chosen,
which belongs to D (F ) but not to D

(
F 2

)
. The “spatial discretization” of the problem consists of

truncating the series after the first 1000 components, and we compute the error of the implicit Euler
method at time t = nh = 1 for different time steps h. The observed convergence with order p = 0.55
is very close to the theoretical lower bound of 0.5. Compare also Example 2, Paper I.

want to construct or approximate the semigroup. Since the result additionally only holds
if we allow multi-valued operators, which gives rise to an extra unnecessary level of nota-
tional complexity, we do not pursue this line of thought further. See e.g. [70, Theorem
4.20], [24, Theorem A1/A2] or [6, 70] for an extensive literature on similar results.

However, we can employ the extra geometrical features of a Hilbert space to give a
useful alternative definition of a dissipative operator.

Proposition 1. Let H be a Hilbert space with the inner product (·, ·). Then the operator
E : D (E) ⊂ H → H is dissipative if and only if

(Eu− Ev, u− v) ≤ 0

for all u, v ∈ D (E).

Proof. For the “if ” part, we observe that

∥(I − hE)u− (I − hE)v∥2 = ∥u− v∥2 + h2∥Eu− Ev∥2

− 2h (Eu− Ev, u− v)

≥ ∥u− v∥2.



20 CHAPTER 3. FRAMEWORK OF M -DISSIPATIVE OPERATORS

To prove the “only if ” part, assume that ∥(I − hE)u − (I − hE)v∥ ≥ ∥u − v∥ for all
h > 0. Then by the polarization identity

h (Eu− Ev, u− v) =
∥(I + hE)u− (I + hE)v∥2 − ∥(I − hE)u− (I − hE)v∥2

4
≤ h/2 (Eu− Ev, u− v) + h2/4∥Eu− Ev∥2

so that (Eu− Ev, u− v) ≤ h/2∥Eu − Ev∥2 for all h > 0. Letting h tend to zero
completes the proof

One may define the concept of a dissipative operator in a way similar to the above
also in a Banach space X . Since this is the setting that was used in Paper I we describe
it briefly here, but refer to Deimling [28, Chapter 13.1] for a complete exposition. First
note that for 0 ≤ λ ≤ 1 we have

∥u+ λv + (1 − λ)w∥ = ∥λ(u+ v) + (1 − λ)(u+ w)∥
≤ λ∥u+ v∥+ (1 − λ)∥u+ w∥

for all u, v, w ∈ X . Thus with 0 < s < t we get

∥u+ sv∥ − ∥u∥ =
∥∥u+

s

t
tv +

(
1 − s

t

)
0
∥∥− ∥u∥ ≤ s

t

(
∥u+ tv∥ − ∥u∥

)
so that ϕ : t → ∥u+tv∥−∥u∥

t is a monotonically increasing function. Since −∥v∥ ≤
ϕ(t) ≤ ∥v∥, the limits limt→0+ ϕ(t) and limt→0− ϕ(t) both exist. The following defi-
nition therefore makes sense:

Definition 4. The semi-inner products (·, ·)± : X ×X → R are defined by

(u, v)± = ∥v∥ lim
t→0±

∥v + tu∥ − ∥v∥
t

for all u, v ∈ X .

One easily confirms that if X actually is a Hilbert space, then (·, ·)− and (·, ·)+ both
coincide with its inner product. They also behave much like inner products. For example,
we have
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• (u, u)± = ∥u∥2,

• (αu, βv)± = αβ (u, v)± for αβ > 0,

• (u,w)± + (v, w)− ≤ (u+ v, w)± ≤ (u,w)± + (v, w)+, and

• | (u, v)± | ≤ ∥u∥∥v∥.

See e.g. [28, Proposition 13.1] for these and more properties. We can now give yet
another alternative definition of a dissipative operator:

Proposition 2. The operator E : D (E) ⊂ X → X is dissipative if and only if

(Eu− Ev, u− v)− ≤ 0

for all u, v ∈ D (E).

Proof. If (Eu− Ev, u− v)− ≤ 0 then (−(Eu− Ev), u− v)+ ≥ 0, so

∥u− v∥ lim
t→0+

∥u− v − t(Eu− Ev)∥ − ∥u− v∥
t

≥ 0.

But this means that ∥u− v − t(Eu− Ev)∥ ≥ ∥u− v∥ for all sufficiently small t > 0.
Since the function t → ∥u−tv∥−∥u∥

t is increasing, the inequality extends to all t > 0.
Conversely, if ∥u − v − t(Eu − Ev)∥ ≥ ∥u − v∥ for all t > 0, then the limit is
nonpositive.





Chapter 4

A new convergence analysis

While the previous chapter provided an answer to the question of what framework to
use, in the present chapter we resolve the first main goal of the thesis, namely to prove
convergence orders for splitting schemes applied to fully nonlinear parabolic problems.
Consider therefore the equation

u̇ = (F +G)u, u(0) = u0, (4.1)

where both F and G are allowed to be nonlinear. As suggested in Chapter 2, the main
problem is lack of regularity if one does not make additional assumptions. To illustrate
this, consider the equation

u̇ = ∆u3.

A class of explicit solutions to this equation is the Barenblatt solutions [9, 94], in one
dimension given by

u(t, x) =
1

t1/4

(
C − |x|2

12t1/2

)1/2

+
,

where [·]+ = max{·, 0} and C is a constant. As illustrated in the right plot of Figure 4.1,
these solutions have compact support for t > 0, and the “corners” at the interface are not
smooth. We thus do not have any higher-order regularity in space or time. This should
be contrasted to the solution of the heat equation with the same initial condition. As is
well-known, and illustrated in the left plot of Figure 4.1, the solution immediately (at
t > 0) becomes infinitely smooth.

At first glance, nothing in this setting suggests that a splitting method (or any numer-
ical method) would converge with any order at all. However, by the remarkable result
of Crandall and Liggett in Theorem 1, the implicit Euler scheme converges with order
p = 1/2. It is therefore a reasonable assumption that the same could hold for other meth-
ods as well. Demonstrating that this is indeed the case for different splitting methods in

23
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Figure 4.1: Left: The solution to u̇ = ∆u with a nonsmooth initial condition for three successive times
t. Right: The Barenblatt [9, 94] solution to the PME with the same initial condition at three successive
times t. We see that the linear problem has a smooth solution while the Barenblatt solution is only
(Hölder) continuous in both space and time.

several different contexts is the content of Papers I-III. In the Oberwolfach report [48],
the slightly different approaches in these papers were unified into one procedure under
the assumption that all the operators F , G and F+G are m-dissipative. Here, we present
the same ideas, but in more detail and generalized to e.g. the alternative range condition
from Assumption 1.

4.1 Unifying idea

Our aim in this section is to prove convergence orders for the schemes

Sh = (I − hF )−1ThG,

where the method ThG for the G-subproblem is yet to be specified. Informally, the idea
is that F is shift-dissipative and satisfies a range condition, and we would like to acquire
criteria for convergence that only depend on further properties of G and ThG. Depending
on the specific problem class, different methods ThG might be suitable. Formally, we have
the following two assumptions. The first one simply guarantees that the method is well
defined.

Assumption 3. The domain and range of the operator ThG satisfy the inclusions

D (F ) ⊂ D (ThG) and R (ThG) ⊂ R (I − hF ) .

The second assumption guarantees the existence of a solution to the full problem.
Further, it ensures that both (I−hF )−1 and (I−h(F+G))−1 are Lipschitz continuous
and that we can perform the necessary algebraic manipulations.
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Assumption 4. The operators F and F +G are both shift-dissipative. Further, the domain
of F +G is given by

D (F +G) = D (F ) ∩ D (G) ,

and it satisfies the range condition

D (F +G) ⊂ R (I − h(F +G)) (4.2)

for all h > 0 such that hM [F +G] < 1/2.

Our approach is based on Theorem 1, which guarantees that the implicit Euler
scheme, given by the time stepping operator

Rh = (I − h(F +G))−1,

is within a O(hp)-vicinity of the exact solution. Instead of estimating the distance from
the splitting approximation to the exact solution, we can thus estimate the distance to the
implicit Euler approximation. In the following theorem, and in the rest of the thesis, we
denote by L[E] the Lipschitz constant of an operator E : D (E) ⊂ X → X , i.e.

L[E] = sup
u,v∈D(E)

u ̸=v

∥Eu− Ev∥
∥u− v∥

.

Theorem 7. Let Assumptions 3 and 4 be satisfied, let u0 ∈ D(F + G) be given and
suppose that h > 0 satisfies hmax(M [F ],M [F + G]) < 1/2. If ThG is stable, i.e.,
L[ThG] ≤ 1 + Ch, and satisfies the consistency bound

∥
(
hGRh + I − ThG

)
Rj

hu0∥ ≤ Ch1+q, (4.3)

for all j = 0, . . . , n− 1, then

∥Sn
hu0 − u(nh)∥ ≤ C ′(hp + hq), 0 ≤ nh ≤ tend,

where u is the mild solution of (4.1), p ∈ [1/2, 1] is the convergence order of the implicit
Euler scheme and C ′ is a constant which depends on tend but not on n or h.

Proof. By Theorem 1 we have ∥Rn
hu0 − u(nh)∥ ≤ Chp, so it is enough to estimate

∥Rn
hu0 − Sn

hu0∥. We first note that by the assumptions and Lemma 4, Sh is stable, and
we have

L[Sh]
n−j ≤ (1 − hM [F ])−(n−j)(1 + Ch)n−j ≤ e2tend(M [F ]+C).
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The theorem thus follows by the following telescopic expansion:

∥Rn
hu0 − Sn

hu0∥ ≤
n∑

j=1

∥Sn−j
h Rj

hu0 − Sn−j+1
h Rj−1

h u0∥

≤
n∑

j=1

L[Sh]
n−jL[(I − hF )−1]∥

(
(I − hF )Rh − ThG

)
Rj−1

h u0∥

≤ eCtend

n∑
j=1

∥(hGRh + I − ThG)R
j−1
h u0∥,

where the n terms of the sum cancel one power of h and leaves Chq .

Remark 4. Under the assumptions of Theorem 7, but with u0 ∈ D (F +G) and
D (F ) ⊂ D (ThG), the splitting scheme does not necessarily converge with an order.
However, as an immediate consequence of Theorem 1 and the above proof, it still con-
verges to the mild solution of (4.1).

Remark 5. In addition to the pointwise convergence result of Theorem 7 we may also
show convergence with an order in L∞(0, tend ;X

)
or C

(
[0, tend], X

)
, by interpolating

the values Sn
hu0. To this end, assume that h is chosen such that tend = Nh with an

integer N , and denote by uh and vh the piecewise constant and linear interpolants,
respectively. These are both functions from [0, tend] to D (F +G), given by

uh(t) = Sn
hu0 and vh(t) =

t− nh

h
Sn+1
h u0 +

(n+ 1)h− t

h
Sn
hu0,

if t ∈ [nh, (n+ 1)h), for n = 0, 1, . . . , N − 1, and uh(tend) = vh(tend) = SN
h u0.

Corollary 8. Under the same assumptions as Theorem 7, both uh and vh converge pointwise
to the mild solution u of Equation (4.1). Further,

∥uh − u∥L∞(0,tend ;X) ≤ C(hp + hq) and ∥vh − u∥C([0,tend],X) ≤ C(hp + hq),

where p is the convergence order of the implicit Euler scheme and C is a constant dependent
on tend but not on N .

The proof is based on the fact that for any t ∈ [nh, (n+ 1)h) we have

∥Sn
hu0 − u(t)∥ ≤ ∥Sn

hu0 − u(nh)∥+ ∥u(nh+ τ)− u(nh)∥,

where τ ∈ [0, h). The first term is C(hq+hp) by Theorem 7, while the second is Ch by
the semigroup property of the mild solution, the Lipschitz continuity of enh(F+G) and
property 3 of Lemma 4 which extends also to eh(F+G). Details can be found in Paper I,
Corollary 4.4, for the uh case, while the proof for vh is analogous.
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4.2 Applications

The stability condition L[ThG] ≤ 1 + Ch and the consistency condition (4.3) have to
be verified on a case-by-case basis. This analysis is carried out in Papers I-III. While the
stability condition is natural and usually simple to verify, the consistency requires more
effort. We summarize the ideas in the following subsections.

4.2.1 Locally Lipschitz perturbations

In Paper I, we consider the case of a (locally) Lipschitz operator G. As F is typically a
diffusion operator, this term will be stiff, while the perturbation G is often nonstiff. It
therefore makes sense to apply the IMEX splitting scheme

Sh = (I − hF )−1(I + hG),

which only uses the implicit method on the stiff part, and handles the perturbation by
the very cheap explicit Euler method. A particular class of problems where this approach
yields a high reduction in computational cost is that of systems of the form

u̇k = Fkuk +Gk(u1, . . . , us),

for k = 1, . . . , s. In this case, applying (I − hF )−1 reduces to applying (I − hFk)
−1

to each component, i.e. the system decouples. The coupling term G can thus be handled
explicitly, and the application of both (I −hF )−1 and I +hG can be parallellized. This
should be contrasted to applying implicit Euler to the full problem, which would require
a costly Newton iteration.

To formalize the above paragraph, let G : D (G) ⊂ X → X be Lipschitz continuous
with Lipschitz constant L[G]. Further assume that F is shift-m-dissipative with D (F ) ⊂
D (G). This directly implies that ThG = I + hG satisfies Assumption 3. As in Paper I,
one can further verify by a fix-point argument that F +G is shift-m-dissipative on D (F )
with

M [F +G] ≤ M [F ] + L[G].

Assumption 4 is thus also satisfied.
The stability of ThG follows directly by the Lipschitz continuity of G, so it only

remains to show the consistency. However, for this specific ThG we get

∥
(
hGRh + I − ThG

)
Rj

hu0∥ = h∥
(
GRh −G

)
Rj

hu0∥
≤ hL[G]∥Rj+1

h u0 −Rj
hu0∥

≤ h2L[G]
(
1 − h(M [F ] + L[G])

)−n∥(F +G)u0∥,

where the last inequality follows from Lemma 4. As(
1 − h(M [F ] + L[G])

)−n ≤ e2nh(M [F ]+L[G]) ≤ e2tend(M [F ]+L[G]),
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we have shown the consistency (4.3) with q = 1. This means that the IMEX scheme
converges with the same order as the implicit Euler scheme.

If D (G) = X we can also assume that G is only locally Lipschitz continuous, i.e for
all r with 0 < r ≤ r0 < ∞ there are constants Lr[G] < ∞ such that

∥Gu−Gv∥ ≤ Lr[G]∥u− v∥

for any u, v in the ball {w ∈ X ; ∥w∥ ≤ r}. To analyze such operators, we fix a positive
r ≤ r0 and consider the truncation Gr : X → X , given by

Gru =

{
Gu, ∥u− u0∥ ≤ r

G
(

ru
∥u−u0∥

)
, ∥u− u0∥ > r

.

This operator is globally Lipschitz with L[Gr] = 2Lr[G] (compare also Paper I). Thus
for 0 < h(M [F ] + L[Gr]) < 1/2, the resolvents

Rh :=
(
I − h(F +G)

)−1
and R̃h :=

(
I − h(F +Gr)

)−1

both exist as operators from D (F +G) = D (F ) into itself, and R̃h has a Lipschitz
constant satisfying

L[R̃h] ≤
(
1 − h(M [F ] + L[Gr])

)−1
.

As in Lemma 4, we further get

∥R̃j
t/nu0 − u0∥ ≤ j

t

n
L[R̃t/n]

n∥(F +Gr)u0∥

≤ te2t(M [F ]+Lr[G])∥(F +G)u0∥ ≤ r

for all j = 0, . . . , n and for small enough t, say t ≤ tr. But this means that

u0 =
(
I − t/n(F +Gr)

)
R̃t/nu0

=
(
I − t/n(F +G)

)
R̃t/nu0

=
(
I − t/n(F +G)

)(
I − t/n(F +Gr)

)
R̃2

t/nu0

=
(
I − t/n(F +G)

)2
R̃2

t/nu0,

and so on. Continuing the procedure, we finally arrive at

u0 =
(
I − t/n(F +G)

)n
R̃n

t/nu0.

Hence, Rn
t/nu0 exists for all n ≥ 0 and

Rn
t/nu0 = R̃n

t/nu0.
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The mild solution u(t) = limn→∞ R̃n
t/nu0 to the truncated problem u̇ = (F + Gr)u

is therefore also a mild solution to the original problem u̇ = (F + G)u on sufficiently
short time intervals. Changing r to r′ in the construction above only changes the maximal
time of existence to tr′ and the mild solutions coincide on [0,min(tr, tr′)]. By taking the
supremum over r of tr, we thus get a lower bound for the maximal interval of existence
[0, tend] for the mild solution to u̇ = (F + G)u, which can be stated in terms of the
Lambert W function:

tend ≥ sup
0<r≤r0

1
2(M [F ] + Lr[G])

W

(
2r(M [F ] + Lr[G])

∥(F +G)u0∥

)
.

Remark 6. The above presentation of the locally Lipschitz results does not assume that
X is reflexive, as in Paper I. This setting is therefore more general, but means that we
can only talk about mild solutions, rather than strong solutions. It should be noted that
Example 1 in Paper I is not valid without this extension, as it considers the non-reflexive
space X = C(Ω)× C(Ω)× L1(Ω).

4.2.2 Delay terms

In Paper II, we consider equations on the form

u̇(t) = fu(t) + g
(
u(t− 1) +

∫ 0

−1
u(t+ σ)dσ

)
,

where u(t) belongs to the Hilbert space H , g : H → H is a Lipschitz continuous
function, and f : D (f) ⊂ H → H is m-dissipative. Such equations e.g. arise in models
of population dynamics that take gestation periods into account, see e.g. [59, 72, 73, 75].
More generally, we consider

u̇(t) = fu(t) + gΦut,

where the function ut : σ 7→ u(t + σ), is called the history segment1 at t. For technical
reasons, the delay operator Φ is given by

Φρ =

∫ 0

−1
ρ(σ)dη(σ),

where η is either absolutely continuous or of bounded variation with a jump discontinuity
at −1. The typical point delay u(t−1) corresponds to the operator Φρ = ρ(−1), which
is realized by η = χ(−1,0], where χ denotes the characteristic function of an interval.
Such equations can be put into a Banach space framework by introducing

X = H × Lr
(
−1, 0 ;H; τ

)
,

1Not to be confused with the time derivative u̇.
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where 1 ≤ r < ∞ determines the class of initial history segments that can be considered,
and where τ is a scaling factor, see Paper II. Then with the operators

F =

(
f 0

0 0

)
and G =

(
0 gΦ

0 d
dσ

)
,

the original equation turns into

U̇ = FU +GU,

for U = (u(t) ;ut) ∈ X . In this case, applying the implicit Euler scheme to the full
problem requires a costly Newton iteration involving f . On the other hand, applying the
splitting scheme

Sh = (I − hF )−1(I − hG)−1,

turns this iteration into a fixed-point iteration not involving f . We refer to Paper II for
detailed algorithms describing both procedures.

With suitable domains D (F ) and D (G), and with the definition D (F +G) =
D (F ) ∩ D (G), Assumption 4 can be verified by using results from Webb [95]. In
fact, F , G and F + G are all shift-m-dissipative, with M [F ] = 0 and with the value
of M [G] = M [F + G] dependent on η. As an additional consequence, the scheme
ThG = (I − hG)−1 satisfies both Assumption 3 and the stability condition.

By using the fact that one can find an explicit representation of (I − hG)−1 and a
very similar representation of (I − h(F + G))−1, Paper II shows the consistency (4.3)
with q = 1−1/r, albeit only in H×L1

(
−1, 0 ;H; τ

)
rather than H×Lr

(
−1, 0 ;H; τ

)
.

As we are mainly interested in the convergence of the solution itself, rather than of the
history segments, this is perfectly fine. In fact, we may see the L1-convergence of the
history segments as a bonus.

Remark 7. By employing semi-inner products rather than inner products, the results in
Webb [95], and hence also our results, extend to the case of H = X being a Banach
space rather than only Hilbert. However, if X is not reflexive we only know that the
approximations converge to a mild solution in X × Lr

(
−1, 0 ;X; τ

)
, and we cannot

say that the first component of this solution is a mild solution to Equation (4.2.2) as the
concept is not applicable.

Remark 8. The operator f is assumed to be densely defined in [95], but this requirement
is superfluous. Since the delay operator Φ maps history segments with values in D (f)

into D (f), it seems plausible that also the condition R (I − hf) = H could be relaxed
to R (I − hf) ⊃ D (f). Indeed, restricting D (G) and D (F +G) to only contain
history segments with values in D (f) means that Assumption 4 is satisfied. However,
under this modification it is no longer clear that D (F ) ⊂ D (ThG), i.e. Assumption 3
might not hold. The issue could be avoided by considering only those delay operators
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Φ that map Lr
(
−1, 0 ;H; τ

)
into D (f), but unless D (f) = H this is a very strong

assumption.

4.2.3 Differential Riccati equations

In Paper III, we consider abstract differential Riccati equations. These are operator-valued
equations of the form

Ṗ = A∗ ◦ P + P ◦A+Q− P ◦ P, (4.4)

and e.g. arise in the optimal control of PDEs [5, 27, 63]. We use P instead of the
usual u here mainly to follow the notation commonly used in optimal control, where u
represents a given input function, but also to emphasize that P (t) is an operator. A typical
application is the linear quadratic regulator problem. There, the aim is to minimize the
cost functional

J(u) =

∫ tend

0
∥y∥2 + ∥u∥2 dt,

subject to the state and output equations

ẋ = Ax+ u, x(0) = x0,

y = Cx,
(4.5)

where −A is an elliptic differential operator. Given the solution to the DRE (4.4), the
optimal input uopt is then found in the feedback form uopt(t) = −P (tend − t)x(t).

We analyze Equation 4.4 in the setting proposed by Temam [89]. This setting is a
mix of variational and non-variational techniques in the following sense. It is variational
in that we are given a standard Gelfand triple

V ↪→ H ∼= H∗ ↪→ V ∗,

with real Hilbert spaces V and H , and an elliptic, bounded operator −A : V → V ∗. It
is non-variational in that the operators F and G we consider are treated as unbounded
operators. To make this precise, we introduce the spaces

V = HS(H,V ) ∩HS(V ∗, H) and H = HS(H,H),

where HS(X,Y ) denotes the Hilbert-Schmidt operators from X to Y . Then as observed
in [6, 89], we have the new Gelfand triple

V ↪→ H ∼= H∗ ↪→ V∗,

where V = HS(H,V )∩HS(V ∗, H) and V∗ is identified with HS(V,H)+HS(H,V ∗).
We can now consider Equation (4.4) in H by defining

D (F ) = {P ∈ V ; A∗P + PA−Q ∈ H},
FP = A∗ ◦ P + P ◦A−Q for all P ∈ D (F ) ,



32 CHAPTER 4. A NEW CONVERGENCE ANALYSIS

and
G : H → H, GP = −P ◦ P.

Then F is m-dissipative if Q ∈ H, and G is dissipative, see e.g. Barbu [6, Chapter II:3.3]
or Temam [89]. However, the range of I − hG is not all of H. This is easily seen from
the fact that the scalar equation

α+ hα2 = β (4.6)

has no real solutions unless β > −1/(4h). This property extends to diagonalizable
matrices and thus also to the H-subset of finite-rank operators. However, if β in Equa-
tion (4.6) is positive, then there is a unique solution for all h > 0. We therefore consider
Equation (4.4) restricted to the closed and convex set

C = {P ∈ H : P = P ∗ and (Pv, v)H ≥ 0 for all v ∈ H},

which is the operator-equivalent of the nonnegative real numbers. This is not a restrictive
assumption as the solutions to Equation (4.4) lie in C for most interesting applications.
One can show that if Q ∈ C then F , G and F + G with D (F +G) = D (F ) ∩ C
are all dissipative, and the corresponding resolvents all map C into C [6, Chapter II:3.3].
Assumption 4 is therefore satisfied for the restrictions F |C and G|C , i.e. the operators F
and G restricted to the domains

D (F |C) = D (F ) ∩ C, and D (G|C) = C.

To verify the other assumptions we need to define ThG. In this case we choose
ThG = ehG, as the current simple form of G means that we can solve the corresponding
subproblem exactly on C. For P0 ∈ C, we have the explicit representation

ehGP0 = (I + hP0)
−1 ◦ P0.

This is the main reason for choosing F to be affine rather than linear. As demonstrated in
Paper III, after an appropriate spatial discretization the evaluation of ehGP0 is essentially
free. Additionally, applying implicit Euler to only the affine problem means that no
Newton iteration is needed. As a result, the splitting scheme is much less costly than
implicit Euler applied to the full problem.

As ehG maps C into C by the properties of (I−hG)−1 and since C ⊂ R (I − hF |C),
Assumption 3 is satisfied. Further, L[ehG] ≤ 1 due to the dissipativity of G, so the
scheme is stable. Finally, we can verify the consistency property by observing that etGP0

is actually a smooth function of t for all P0 ∈ C. We can thus expand it in a Taylor
series. This, combined with Lemma 4 and the polynomial form of GP yields the con-
sistency (4.3) with q = 1, i.e. the splitting scheme converges with the same order as the
implicit Euler scheme. We refer to Paper III for the details.



Chapter 5

A closer look at Riccati equations

During the work on Paper III, the importance of differential Riccati equations (DREs) of
the form

Ṗ = A∗ ◦ P + P ◦A+Q− P ◦ P
became apparent, and the study of these constitute a second central line of work in this
thesis. The main difficulty in applying any numerical method to such an equation is the
fact that it is operator-valued. This means that a spatial discretization will turn it into a
matrix-valued equation. Where a vector-valued equation would have N unknowns, we
thus instead have N 2 unknowns. As the solutions are generally dense matrices, this yields
storage problems even for moderate values of N . It is therefore vital to utilize structural
properties of the solution.

5.1 Structure-preserving splitting schemes

Taking structural considerations into account has become something of a trend within
numerical analysis during the last few decades, in a shift from the focus on “black-box”
integrators applicable to “all” problems, to methods tailored for specific problem classes.
We refer to the monograph by Hairer, Lubich and Wanner [38] and the recent survey
by Christiansen, Munthe-Kaas and Owren [19]. Properties of interest that one would
typically want to preserve are e.g. area or volume, first- or second integrals or energy.

In the case of matrix-valued DREs, we would like to utilize the property of low rank.
This means that we can factorize the solution P ∈ RN×N as P = ZZT, where Z ∈
RN×r with r ≪ N . While there are currently no definite results on when such structure
is to be expected, it is frequently observed in practice. Figure 5.1 provides an example
of a typical situation. There are partial results in the related context of algebraic Riccati
equations [10], and in the context of Lyapunov equations the issue is e.g. discussed in [4,
80, 83].

33
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Figure 5.1: Left: The singular values of a typical solution to a matrix-valued DRE. While the problem
dimension is N = 1357, the numerical rank is only about 150. Right: The rank of the splitting
approximation of a matrix-valued DRE with larger dimension N = 5177. Note how the rank stays
comparatively very small.

Two further properties we would like to preserve are symmetry and positive semi-
definiteness. If Q and P0 are symmetric and positive semi-definite, then so is the solution
P (t) for any t > 0 [1]. Clearly, this is automatically fulfilled if a true low-rank imple-
mentation is used. However, it was shown in [30] that no linear “one-step” or multistep
method of higher order than p = 1 can produce a positive semi-definite approximation.
This is exemplified by e.g. the higher-order BDF methods in [11, 12], where the approx-
imation is split into its positive and negative definite parts. Aside from not preserving the
positivity, this additionally leads to extra implementation difficulties.

However, as we show in Paper IV, exponential splitting methods allow a true low-rank
implementation, and the second-order Strang splitting presents no additional complica-
tions as compared to the first-order exponential Lie scheme. This does not contradict the
results in [30] because the splitting schemes are nonlinear methods.

Remark 9. Recently, Koch and Lubich [58] and Lubich and Oseledets [66] have made
progress in the related area of dynamical low-rank approximation. In that setting, one
fixates a certain rank r and searches for the best approximation of rank r. In our case, we
search instead for a matrix of lowest rank that yields an error less than a fixed tolerance.

5.2 Alternative error analysis

In Paper IV, we also considered more general DREs, of the form

Ṗ = A∗ ◦ P + P ◦A+Q− P ◦K ◦ P, (5.1)
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where the inclusion of the operator K yields additional interesting applications in optimal
control. Compared to (4.5), we may now consider systems of the form

ẋ = Ax+Bu,

y = Cx,

which leads to K = BB∗. However, this modification also means that the nonlinearity
G given by GP = −P ◦ K ◦ P is no longer necessarily dissipative, even in the most
simple case of 2× 2-matrices. As a consequence, the new equation no longer fits into the
framework of Paper III, and a different analysis is needed.

Under reasonable assumptions on K, the operator G is still locally Lipschitz continu-
ous on X = HS(H,H), and the problem could therefore be put into the framework of
Paper I. However, that concerned the splitting scheme (I−hF )−1(I+hG). As we know
the exact solution etGP0 also for this new nonlinearity, using the approximation I + hG
instead seems a waste. Furthermore, as noted in Paper IV, also ehFP0 can be computed
in a straightforward way. Paper V therefore studies the exponential Lie splitting schemes

Sh = ehF ehG and Sh = ehGehF

in the abstract setting of Paper III. We note that in the absence of an operator K, expo-
nential splitting has also been proposed in [8], but without a convergence order analysis.

The error analysis is now based on comparing the splitting approximation to the exact
solution rather than to the implicit Euler approximation. Due to the lack of dissipativity,
it is no longer clear that such a solution exists. However, we can temporarily consider
Equation (5.1) as semilinear, with the linear part L given by

LP = A∗ ◦ P + P ◦A,

on the domain D (L) = D (F ). If G is locally Lipschitz then so is the perturbation
P 7→ GP +Q. The standard results on semilinear equations, e.g. Pazy [79, Section 6.1],
therefore yields the existence of a strong solution for sufficiently small time intervals. If
Q ∈ D (L) we can additionally show that the perturbation is locally Lipschitz continuous
also on the space D (L) equipped with the graph norm

∥P∥D(L) = ∥P∥+ ∥LP∥.

This means that the strong solution is actually a classical solution [79, Theorem 6.1.7].
Consider now the consistency of the scheme. From the proof of existence, it also

follows that the solution eh(F+G)P0 satisfies the variation-of-constants formula,

eh(F+G)P0 = ehLP0 +

∫ h

0
e(h−τ)L

(
Geτ(F+G)P0 +Q

)
dτ . (5.2)

In this formula we can do a first-order Taylor expansion of G, where the resulting trun-
cation error can be bounded without further regularity assumptions. Similarly, for the
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splitting scheme we can do a second-order Taylor expansion of ehG around ehFP0. The
difference between the splitting approximation and the exact solution can then be identi-
fied as the local error of a first-order quadrature rule, which yields the desired result. This
idea originates with Jahnke and Lubich [54] and was used in a similar context to ours
in [43], see also the recent paper [47]. Finally, to show convergence of order q = 1, we
must establish also stability of ehG. However, for sufficiently small time steps this again
follows from the local Lipschitz property of G. Details are provided by Paper V.

Remark 10. We note that while this error analysis yields an improved order of conver-
gence compared to the previous results of Paper III, the current approach leads to larger
error constants of the form etL[G]. This happens since the Lipschitz statements do not
take the sign of G into account;

L[−G] = L[G].

As a consequence, the theory does not distinguish between solving the equation Ṗ = GP
in forward or reverse time, and solutions that “blow up” in one temporal direction will
be treated as doing so in both directions. By employing dissipativity instead, one can
properly treat such cases and verify that a solution exists for all nonnegative times.



Chapter 6

Conclusions

In view of the first theme of the thesis, the presented work demonstrates that convergence
orders for splitting methods can be shown for fully nonlinear parabolic problems under
only minor assumptions on the regularity of the initial condition. While high orders can-
not be expected, these results establish a useful baseline and fills the gap in the literature
between convergence without orders and convergence with high orders under restrictive
assumptions.

We have provided both meta-results such as Theorem 7 as well as verifications of
these for explicit problem classes. As demonstrated by the diverse set of applications, the
given framework is widely applicable, and further problem classes could be analyzed by
applying the meta-results to other perturbations. It should also be reiterated that while
the Banach space setting might seem abstract, a main benefit is that the temporal results
are independent of subsequent spatial discretizations. The presented results can therefore
be used as a cornerstone in the analysis of a full discretization.

Numerical verifications of the convergence results have not been included in this
summary, but can be found in the respective papers. These demonstrate the validity of the
theory, and also show that the methods are applicable to concrete problems. In addition,
they confirm that in many areas splitting schemes constitute a competitive choice.

In view of the second theme of the thesis, the in-depth study of differential Riccati
equations demonstrates that splitting schemes are well suited for the preservation of posi-
tivity and low rank. This is confirmed by the numerical experiments carried out in Paper
III and IV. These are based on algorithms that, while straightforward, constitute the first
actual splitting implementations that are applicable to the large-scale setting. As they
are less costly than comparable numerical methods, the new convergence order analysis
implies that for this problem class, splitting schemes are very promising.
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