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Low-rank second-order splitting of large-scale The aim of this paper is to introduce efficient splitting methods for
differential Riccati equations large-scale problems of the type (1). With large-scale we mean that
the dimensionN is large, and by efficient we mean that the meth-
Tony Stillfjord ods should produce small errors without unneccesary computational
effort. To this end, we introduce the operators
Abstract—We apply first- and second-order spliting schemes to the FP=A"P+PA+Q and (3)
differential Riccati equation. Such equations are very imprtant in e.g. GP = —PSP. (4)

linear quadratic regulator (LQR) problems, where they provide a link
between the state of the system and the optimal input. The miebds The motivation for dividing the problem into these two parts is
can also be extended to generalized Riccati equations, eayising from that the subbroblems

LQR problems given in implicit form. In contrast to previousl y proposed P

schemes such as BDF or Rosenbrock methods, the splitting srhes P=FP P(0)=P and 5
exploit the fact that the nonlinear and affine parts of the prdblem, when . P, (0) o ®)
considered in isolation, have closed-form solutions. We s that if the P=GgP, P(0)=PF, (6)

solution possesses low-rank structure, which is frequentlthe case, then

this is preserved by the method. This feature is used to impteent the —are easier to solve separately than the full problem (1): both have
methods efficiently for large-scale problems. The proposedhethods are closed-form solutions and (5) is additionally affine. In the following
expected to be competitive, as they at most require the soioh of a e denote the solution operators to these problemgbit) and

small number of linear equation systems per time step. Find, we apply . . . :
our low-rank implementations to the Riccati equations arisng from two 7Tg(t), respectively. Thus7»(t) P is the solution to (5) at time.

LQR problems. The results show that the rank of the solutions &y low, We propose to use the Lie and Strang splitting schemes [33]. For a
and the expected orders of convergence are observed. introduction to splitting methods in general, we refer to [20, Section
Index Terms—Differential Riccati equation, Riccati differential equa- V], [15'.89(:“0” ”.'5] and [24]. In our context, the schemes areqgi
tion, splitting methods, large-scale, low-rank by the time-stepping operators
Ly = 'Tg(h)T]:(h) and (7)
l. INTRODUCTION Sn =Tg(h/2)TF(h)Tg(h/2),
We consider the differential Riccati equation respectively, whereh > 0 is the time step. The Lie and Strang

. - splitting approximations to the solution of (1) at tihe= nh are then
P(t)=A P(t)+ P(t)A+Q — P()SP(t), te€[0,T] (1) 9iven by L} Py and Sy P, respectively. We note that these schemes
P(0) = Po. are first- and second-order accurate, respectively, in the cumanix

. . . . . setting. That is, ifP(¢) solves (1), then
This is a semi-linear matrix-valued evolution equation foft) € g ®) @

RM*N _Such equations arise in many areas, for example in linear | L Py — P(nh)|| < Ch and
quadratic regulator (LQR)_ pr(_)blems and optimgl state estimation [2], SR Py — P(nh)|| < Ch?,
[10], [27]. The main application that we have in mind are the LQR
- Section 4], through proving consistency by e.g. Taylor expansions,
J(u) = / (Q%y) + (Ru, u) dt, and stability for small enough by the local Lipschitz continuity of
0 the nonlinearity. However, this approach leads to error bounds that
subject to the state and output equations depend on the matrices involved. In the case of a discretized PDE,
) these error bounds might tend to infinity when the discretization is
&= Az + Bu, refined. Hence, a stiff error analysis is called for, but this is much
@
y=Cz. more difficult and out of the scope of this technical note. Such

Under certain assumptions on the involved matrices, it can be sho@h analysis is, however, performed in [17] for a first-order method

it he opimal vk s ghen n feecbac om e () — S0 e LS s wnder b eseton 1
—R™'BTP(T —t)z(t), where P(t) solves the Riccati equation (1) g P ' P g

with S = BR-'B", Q = CTQC and P(T) = 0, see e.g. [2]. One be a problem due to excessive .storage requirements, gnd one is
. LT forced to utilize structural properties. One such property is that of
can also consider the implicit case, . . T
low rank, i.e. that we can accurately approxim#&@) ~ z(t)z(¢)
M# = Az + Bu, where z(t) € RV*" with r <« N. It has been observed that the
) ) ) . o ) _solutions to the Riccati equation commonly exhibit such behaviour,
with an invertible mass matri®/. This gives rise to a generalizedsee e g. [3]. Partial results on when this is to be expected in the
Riccati equation similar to (1), see e.g. [21], which we handle ifs|ated area of algebraic Riccati equations (ARE) can be found in [4],
Section IV. . . . ~and for Lyapunov equations the issue is e.g. discussed in [26], [32].
In general, we suppose that Equation (2) witke R is the dis- e therefore describe how to implement the schemes in a way that
cretization of the corresponding PDE. Thdswould prototypically preserves low-rank structure.
be the discretization of an elliptic differential operator. Alternatively, Many of the currently available methods for solving the Riccati
one could consider the infinite-dimensional case directly by a”OWir&quation are based on matrix factorizations, which clearly is not
x to belong to a Hilbert or Banach space. Then Equation (1) fgasible in the large-scale case. The idea so far in the large-scale
operator-valued and can e.g. be treated in the space of Hilbeghse has been to apply the matrix versions of common time-stepping
Schmidt operators [23], [34]. This corresponds to the “undiscrétize methods, e.g. BDF methods [6], [25] or Rosenbrock methods [7],
case whereV — oc. [25], and realise that in each step an ARE or a number of Lyapunov
T. Stillfjord is with the Department of Numerical Analysis, hdi University, equations havg to be. solved. Low-rank algorithms for the solution
Lund, Sweden. e-mail: tony@maths.lth.se. of these equations exist and we refer to [9], [31] for recent svey
Manuscript received Month1 Datel, 2014; revised Month2eRaR01X.  see also [5]. There are two main classes, the Krylov-like projection
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methods, e.g. [18], [30], and the methods based on the low-rank Afbdm which we conclude thaP(t) is differentiable and satisfies (6).
iteration proposed in [22]. In both classes, one of the basic operatidritsat this solution is unique e.g. follows from taking = Q = 0

depends on solving linear equation systems involuihg in [1, Theorem 4.1.6]. O
The splitting methods constitute a new class of methods, for which
the basic operation is solving = Az over the same short time I1l. L OW-RANK SPLITTING METHODS

interval as the time step of the method. Using a standard implicit|, o qer to implement the splitting schemes efficiently, we consider
scheme for this only requires the solution of one or two IlneeHOW the low-rank formulation of the solution operatdfs (k) and

equation_ systems: WhiCh is less than or equal to what is commocyz(h)_ We assume throughout this section that there are low-rank
needed in the projection- or ADI-based methods. If the properties @l rizationsz andQ; of Py, andQ, respectively, i.e
A can be utilized to employ a better tailored method, the efficiency ! ' T

can further be much improved. Hence we expect the splitting methods Py=zz' and Q= QfQ}~
to be very competitive. A further advantage of the proposed splitting
methods is that they both yield approximations that are positive semai- The affine subproblem
definite, like the solution to (1). This is in contrast to e.g. the BDF
and Rosenbrock methods, and in fact to any interesting “one-step .
or linear multi-step method, which only have this property for the RAT T hA SAT T sA
methods of order one [13]. ¢ z=e +/0 ¢ QQpeds

A brief outline of this note is as follows. In Section Il we present hAT hAT AT AT AT T
the assumptions on the involved matrices and give the solutions to the = (e 2) (" 2) +/ (€™ Qs)(e™" Q) dr.
subproblems. Section Il demonstrates how to formulate the splittin . 0 ) L
methods in a low-rank context. The extension to generalized Riccggﬁmte the |ntegraIIQ(h) gnd consider an approximation by a
equations is done in Section IV, and finally Section V presents tfigadrature formula with weights;. and nodesr:
results of two numerical experiments.

By Equation (8) we have

9)

To(h) ~ Y wi (™ Qr) (™47 Qy) .
k=0

Il. PROBLEM SETTING

We make the following assumption on the matrices in (1): Then we also havéo(h) ~ 3", where
Assumption 1. The matricesA, Q and S all belong to RV*¥, g = [\/hwleTlATQf7'\/h’l,UQGTZATQf,...7\/hw5€TsATQf].

Further, Py, Q and S are all symmetric and positive semi-definite. R

. . Lo ) By this notation we mean that the matrices/hw;e™"* Q; are

Rﬂin?te thaiA;fsumztllgn 1@1&”}3".6(1 n '_[?e LdQF: s_tettlr::gBtfhe placed side by side. This new matgphas more columns than either

A ?_r ml - "in the ist IS pf03| ve detinite. tu_r e, _tor Qy, and likely also more than its rank. A better low-rank candidate
ssumption 1 guarantees the existence of a unique symmetric pos'l“ﬁh) ~ yyT can be found by applying a column-compression

semi-definite solu.tlorP(t) for t > 0, see e.g. [1, Theorem 4.1.6]. echnique. For instance, consider applying the rank-revealing QR
Also note that while we assume that the problem is autonomous, &iorization (RRQR) tg)". This yields a factorization

results extend in a straightforward manner also to the time-dependent
case. JTP=0 {Ru R12}
Consider now the exact solutions to the subproblems (5) and (6). 0 R

By differentiation, one confirms at once that where P is a permutation matrixR;; € R™*", the norm of Ras is
small, and@ is orthogonal. Thus (in MATLAB notation),

t
Tr(t)Py = o4 PretA + / A" Qe*Ads. ®) /
0 9" ~ Q.1 [R11 Riz] P,

For the nonlinear subproblem, we have the following lemma:

Lemma 1. Let Assumption 1 be fulfilled. Then the solutify(t) Po

. . . . ~~T T ~ T ~ T T

to the problem(6) with ¢ > 0 is unique and given by G99 ~yy' = (P [Ri1 Ri2] )(P [Ri1  Rio] ) ,

To(t)Po = (I +tPoS) ™" Po. wherey belongs taR™ *". Finally, the low-rank approximatiomw"
Proof. We first note that sincé and.S are both symmetric positive 0 77 (h)Fo is given by forming
semi-definite, there exists a nonnegative, diagonal mafrixand W = [ehATZ y]
a nonsingular matrix’ such thatP,S = VDV !, see e.g. [19, ’
Corollary 7.6.2b]. Thus the function and again employing column compression to achieve' ~ w'.

P(t) = (I +tPOS)71PO -V +tD)’1V’1PO In practice, one would use a high-order quadrature formula and a

RRQR tolerance which is small enough that the corresponding errors
is well defined for all nonnegative time¢sand uniformly bounded by are negligible compared to the local error of the method.
VIVl Poll. As (I+tP,S)P(t) = Py is constant, we therefore  we need to compute terms of the fore' 2 efficiently in the
get above procedure. This can be done in many different ways, edgentia

0= (I e h)PoS)P(t +h) — (I +tPyS)P(t) qlivided into two categories. Thg fiTrst.category consists of numerical
(I +tPS) (P(t h) - P(t)) + RPySP(t 4+ h) linear algebra techniques whes&! = is treateo! as a matrix-vector
’ product. See e.g. [12] for a recent comparison of four common
and lettingh — 0 yields the continuity ofP(t). Dividing both sides approaches in th(Ta large-scale case. In the second category arelsnetho
of the above equality by further yields the existence of the limit that considere** > as the solutionz(s) to the system of ODEs
_ P(t+h) — P(t) . T = ATx,.m(O). =2 Here we refer to [16]. We ngte thqt employing a
lim — = —(I +tPyS)” PoSP(t), standard implicit Runge-Kutta methodio= A"z is efficient enough
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for the proposed methods to be competitive, as this means that fdgorithm 2 Computing the low-rank factor ofq (h)

basic computation only requires the solution of a few linear equatiq;,ﬁput; Low-rank factor Q; such thatQ = QfQ}, Quadrature
systems involvingA. However, the efficiency can be much improved weightsw;, and nodes, for k =0, ..., s.

if the problem possesses special structural properties. For exafple, for k¥ = 0 to s do

A is the discretization of a differential operator on a simple domain,  solve (t) = Aka(t), z(0) = Q; for t € [0, 7%

then pseudo-spectral methods based on the FFT [11] or dimensiognd for

splitting [20] can yield a vast improvement. In summary, the specific Fgrm §= [\/ﬂml(h), Vhwaza(h), ..., \/hTqus(h)}

method needs to be chosen according to the characteristi¢s mft Column-compresg ~ § by e.g. RRQR

even a non-optimal choice will yield good performance. Output: y

B. The nonlinear subproblem IV. GENERALIZED RICCATI EQUATIONS

Now consider the nonlinear subproblem (6). By Lemma 1, the |5 many LQR problems, the state equation is instead of the form
solution is given by
Mz = Ax + Bu,
_ Toy-1,.T
To(h)Po = (I + hez 5)" 22" whereM is a mass matrix arising from a finite element discretization.
We rewrite this expression by using the following special case of ti¥e will assume that\/ is invertible, to avoid the extra difficulties

Woodbury matrix inversion formula [14]: connected with differential-algebraic equations, see [21] for this case.
. . We can thus theoretically convert the state equation to the usual form,
I+YZ)y  =I1-Y(I+2Y) Z 10
( ) ( ) (10) & =M 'Az + M 'Bu. (12)

This equality can be shown by simply multiplying witht- Y Z from

However, even if bothA and M are sparse matrices\/ ~'A is
the left and from the right. We séf = hz and Z = 2'S, which P M

usually a dense matrix, so in practice we do not want to do this.

yields Instead we seek a way to formulate our methods to implicitly handle
To(h) Py = (I — ha(I + hzTSz)’lzTS)zzT the matrix M. The Riccati equation corresponding to (11) is
=z(I-(I+ hzTSz)_lhzTSz)zT P(t) =AM TPt)+Pt)M A+ Q
=2(I+hz'Sz)"'2". — P()M™'BR'B"M"TP(t), P(0) = P,

The computation of TSz is cheap in many cases, e.g. if a low-rankvith the feedback.*(t) = —R™'BTM~"P(T — t)z(t). By setting

or Cholesky factorization fofS is available or cheaply computable,P = M ~TPM~" (cf. [29]) we see that we can reformulate this as
or if sparsity structure can be utilized. At the worst, the cost is thHte generalized Riccati equation

of r matrix-vector multiplications ifz € RN*". Note that in the MTP()M = ATP()M + M"P(t)A + Q
LQR case, we have'Sz = z"BR™'B"z. SinceB € RV*™ and T T

R € R™*™ where generallyn < N, the computation is certainly — M P(t)BR™ B P(t)M,
efficient in this case. Given'Sz, we can Cholesky factorize the with the initial conditionP(0) satisfyingM " P(0)M = P,, and with

(12)

inner matrix as the feedback:* (t) = —R™' BT P(T — t)Mx(t).
I+hz'Sz=LL". Consider now splitting (12) into its affine and nonlinear parts,
] as for (1) previously. By cancelling the factorgf” and M we
This means that see at once that the nonlinear subproblem is the same. Similarly

to Equation (8), by differentiation one sees that the solution to the

_ -7 —T\T
To(h)Po = (2L77)(zL77) affine subproblem is given by

which is the sought after low-rank factorization @§(h)FP,. Note P(t) = ehM*TATPU ohAM !
that it has the same rank &5, in contrast to the affine subproblem N (13)
where the approximation can be of higher rank tifan +/ esM’TATM—TQM—lesAM’ldS

To summarize, we outline the procedure for taking one Lie splitting 0

time step in Algorithm 1. This depends on the low-rank factor ofhus, the only necessary change to the algorithm is to instead solve
Io(h), which only needs to be computed once. For completeness, W& i = ATz, z(0) = z, over [0, 4] to computee™ 4"z, and to
summarize also this computation in Algorithm 2. We omit presentirgplve M i = A"z, 2(0) = M~ "Qy, over different intervalgo, s]

the Strang splitting in algorithmic form as it is very similar toto approximate the integral. Note that the initial data is transformed

Algorithm 1. by M in the second case, but not in the first.

Algorithm 1 Computing the low-rank factor of;, P V. NUMERICAL EXPERIMENTS

Input: Low-rank factorsz and y such thatP = zz" andyy' Example 1. As a first example, we study a linear quadratic regulator
approximates the integrdly (h) in (9) problem as described in Section |I. We describe first the continuous
Solvei(t) = ATxz(t), z(0) = z for t € [0, A] version of the problem. Lef2 = (0,1) and let the state space be
Form @ = [z(h), ] H = L*(Q2). We takeA to be the Laplaciam\ : D (A) C H — H
Column-compressy ~ @ by e.g. RRQR with periodic boundary conditions. The control space will lie=
Cholesky factorizel + hw'Sw =: LLT R™ with m = 10, and B : U — H will be the sum ofm evenly
SolvezLT = w spaced interval sources:

Output: = m

Bu=> X[, .2;+1/(4m);
j=1



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 20Z 4

wherez; = j/m. Thus B is a linear bounded operator. We take ' Order plot
R € R™*™ to be the identity matrix. e ‘
To defineC, we choose first the real trigonometric orthonormal _‘f‘%{;)“g
basis forH: {1} U {ex}rz1 U {fx}2Z:, where 10° .- - o(h?) ‘ -

ex(z) = V2cos(2nkz) and fi(z) = V2sin(2wkz).

Then we set

me

C(ao + Zakek + bkfk) =ao + Zakek + bk f,
k=0 k=0

Relative errors
[
o

. . . 10 ‘ ‘
for a small m., i.e. we simply truncate the sum. Thi§' can 107 102 10" 10°

be thought of as representing measuring equipment that can only h

measure low-frequency signals. Fa 1 Th i SR P/ [Pl d |sr
. : : P ig. 1. e relative errorg|L} Py — PretllF ref||[F an PPy —
We discretize the problem in space b¥/ +1 equidistantly spaced Pralle/ | Petlls when approximating the solution to (1) for Example 1. The

nodes, corresponding @/ + 1 frequencies in the spectral domain,giterent step sizes aré = 7/n, with n = 2,4,...,512 and T = 1.
and takeM = 1000. The discretization ofC' has a natural low- The reference solutiofe; Was also computed by the Strang splitting, albeit
rank factorizationcc! in the spectral basis, whekeis a matrix of with a finer temporal step size af = 1/2048. The spatial discretization has
dimension(2M + 1) x (2m. + 1). In order to work in the same v = 2001 nodes.
basis we instead considé cc' E, where E denotes the orthogonal

transformation matrix between the two different bases. Qet be P

the discretization of) = CTC. Since
—a— Strang
Qu=(E"cc"E) (ETec"E) = Ecc"e¢"E = E"cc" B,

Efficiency plot

)

we can also low-rank factoriz€,; = ww' with w = E'¢. For
this experiment we choose.. = 4, which yields a matrix of low
rank. We use the initial conditio?, = 0, corresponding to the cost
functional given in the introduction, but similar results are obtained
for other values off,.
The Lie and Strang splitting schemes were implemented in MAT- 0 ‘ ‘
LAB according to Algorithm 1 (with a slight modification for the 10 10° 10° 10"
Strang case) and applied to the prolglem described above. In order Time (s)
to Compute_ expres§lons of the foren” =, FFT. was used. Further, Fig. 2. The same experimental setup as in Figure 1 for Exampletithk
approximating the integral&, (k) was done using4th-order Gauss relative errors are now plotted against the computation tWe.see that the
guadrature, and the RRQR tolerance was setdto'”. Strang splitting outperforms the Lie splitting scheme foreatior levels, as
In Figure 1 we see that the methods exhibit the expected erexpected.
behaviour: the Lie splitting converges with orderand the Strang
splitting with order 2. Note that we measure the errors in the Rank plot
Frobenius norm||-||r, both here and in Example 2. As computing 10 ‘ ‘ ‘
Tx(h)z is likely to be significantly more expensive than computing
Ts(h)z, we expect the Strang splitting to be more efficient than
the Lie splitting. This is confirmed in the efficiency plot Figure 2
which shows the achieved error against the computation time. Finally,
Figure 3 shows that the rank of the approximation indeed does remain
low, r = 9, while n = 2001.

Relative error
.a\

=
o

!
£

Rank
O B N W h U1 O N 0

Example 2. As a second example we consider the real-world
application of optimal cooling of steel. We refer to [8], [28] for
a detailed description of the problem. In short, a section of rail
needs to be cooled after manufacturing. This is done by spraying a
cooling fluid onto the outside of the rail. In order to preserve desirabfty. 3. The rank ofSPy, when approximating the solution to (1) for
material properties, the temperature differences inside the rail shobkample 1. Herep =0, ...,512 andh = 1/512. The spatial discretization
be kept small. We thus have an optimal control problem, where tgsV = 2001 nodes. Note how the rank increases franto 9 in the first

. . step and then remains at this value throughout the rest ohtlgration.
controls are chosen as the temperatures of the cooling fluid sprayeé)

onto different parts of the boundary. The system is of the form

Mi = Az + Bu, and N = 5177, with the matricesB € RV*" andC € R°*V. We
again used) = CTC, and P, = 0, but the weighting facto for

the input was set td0~°I. The last two parameters are the final
as in Section IV. Here,M and A arise from a finite element time, T = 20, and the RRQR tolerance, which was setléo '°. To
discretization of the cross section of the rail, and the operator approximate the solutions to the linear systelis = Az we used
forms differences between the temperatures in certain nodes. By third-order RadaullA method, which is an implicit Runge—Kutta
refining the finite element discretization, differently sized matricemethod.

can be acquired. For this experiment, we used the sizes 1357 Also in this problem we observe the expected error behaviour, as

0.2 0.4 0.6 0.8 1
t

o

y = Cu,
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. Order plot . Efficiency plot
10 e ‘ 10 : ‘
——Lie 7 i | —e—Lie
—a— Strang RS : : v —e—Strang
w107 = =-0O(h) ] ;-'10717 I i
5 [[--o0) S
0. B -2
$10°} 210 i
S107°% <10
3 2
<] m Y
~ 107 107
-5
- ‘ ‘ 10 ; ;
1010—2 10 10° 10 10° 10" 10° 10°
h Time (s)
Fig. 4. The relative errors|L} Py — Preillr/||Prefllr and [|S;PPo —  Fig. 6. The same experimental setup as in Figure 4, for Exampléti2 w

Preil|r/ || Pret||r when apprOX|mat|ng the solution to (12) for Example 2 withN = 1357, but the relative errors are now plotted against the comiputat
N = 1357. The different step sizes ate= T'/n, with n = 4,8,...,256. time. We see that the Strang splitting outperforms the Liettsgli scheme
The reference solutiofe was also computed by the Strang splitting, albeifor all error levels.

with a finer temporal step size &f = 1/1024.

Efficiency plot

10 =
—e—l1e
, Order plot - [—=—>Strang
10 : 5107
—
—
w0 ©
5 £107
— -B
= a1072L =
10 <
2 10t
=107}
2 .
L 10
10 10 10° 10°
. Time (s)
1010’2 10" 10° 10 : . P .
ig. 7. The same experimental setup as in Figure 4, for Exam w
h Fig. 7. Th tal setl F 4, for E lati2

N = 5177, but the relative errors are now plotted against the comioutat
time. The Strang splitting outperforms the Lie splitting soieefor all error

Fig. 5. The relative errorg|L} Py — Pretl|r/||Petllr and [|S;Po — Hevels also here

PrefHF/HPrefHF when approximating the solution to (12) for Example 2 wit
= 5177. The different step sizes ate= T'/n, withn = 16,32, ...,512.
The reference solutio®e; was also computed by the Strang splitting, albeit Rank plot
with a finer temporal step size & = 1/2048. 120 ‘ ‘

seen in Figures 4 and 5, féa¥ = 1357 and N = 5177, respectively.
Figures 6 and 7 show the corresponding efficiency plots, where the
Strang splitting again outperforms the Lie splitting. Figures 8 and 9
show the rank of the approximation over time for the two different
cases. We note that while the rank is higher than in Example 1 it is 20
still much less than the dimension of the problem. We also observe

that it is of similar size regardless of the spatial discretization, which o 5 10 15 20

indicates that it is a property of the continuous version of the problem, 13

and that further refinements of the grid will not substantially i iNCreasge g The rank ofS7 P, when approximating the solution to (12) for
the necessary rank. Example 2 withN' — 1357. Here,n — 0, .. ., 256 and h — 20/256.

Finally, to further validate our results, we also computed the
solution to Example 2 withN = 1357 using the second-order
trapezoidal rule for time-stepping. We solved the resulting (dense)
algebraic Riccati equations with MATLAB's built-in solver “care”, We have shown how to efﬁcienﬂy imp|ement low-rank Sp“ttmg
a computation that took about four hours. Comparing this to thethods for the differential Riccati equation, as well as for the
splitting computations, which required less than two minutes eaifeneralized version. The numerical experiments indicate that the
clearly demonstrates the benefits of the low-rank approach. We usgéthods converge with the expected orders. As the Strang splitting
the same step sizes for the different methods, which means tRakssentially as cheap as the Lie splitting, while achieving better
the difference between the trapezoidal method and the Lie splittiagcuracy, we clearly recommend using the Strang splitting except for
should be of sizeD(h), while comparing it to the Strang splitting when the solution is not at all smooth. While the presented examples
should yield a difference of siz®(h?). In Figure 10, we show these are not extremely large-scale, the results nevertheless indicate that
(relative) errors over time. As the step size2i§/256 ~ 0.08, these increasing the problem dimensions even further should present no
results correspond well with the expectations. inherent difficulties. An in-depth comparison between the proposed

VI. CONCLUSIONS



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 20Z

Rank plot
150 :
100t
=
=
3
/e
50
0 ‘ ‘ ‘
0 5 10 15 20
t

Fig. 9. The rank ofS;’ Py when approximating the solution to (12) for

Example 2 withN = 5177. Here,n =0, ...,512 andh = 20/512.
107
8
2107
<] 1
g
%
<10
~
10° : : :
0 5 10 15 20
t

Fig. 10. The relative differences between the trapezoidel method and the
two splitting methods over the time intervl, 20] when approximating the
solution to (12) for Example 2 witlvV. = 1357. The number of steps was
N = 256, giving a step size oh = 0.0781.

splitting methods and projection-based or ADI-based methods is
of the scope of this technical note, but it is subject to ongoing work
which will be published elsewhere.
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