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CONVERGENCE OF THE IMPLICIT-EXPLICIT EULER

SCHEME APPLIED TO PERTURBED DISSIPATIVE

EVOLUTION EQUATIONS

ESKIL HANSEN AND TONY STILLFJORD

Abstract. We present a convergence analysis for the implicit-explicit (IMEX)

Euler discretization of nonlinear evolution equations. The governing vector
field of such an equation is assumed to be the sum of an unbounded dissipative
operator and a Lipschitz continuous perturbation. By employing the theory
of dissipative operators on Banach spaces, we prove that the IMEX Euler and

the implicit Euler schemes have the same convergence order, i.e., between one
half and one depending on the initial values and the vector fields. Concrete
applications include the discretization of diffusion-reaction systems, with fully

nonlinear and degenerate diffusion terms. The convergence and efficiency of
the IMEX Euler scheme are also illustrated by a set of numerical experiments.

1. Introduction

The implicit-explicit (IMEX) Euler scheme is a commonly used time integrator
for nonlinear evolution equations of the form

(1.1) u̇ = (f + p)u, u(0) = η,

where f is an unbounded dissipative operator and the perturbation p is Lipschitz
continuous, with a moderately sized Lipschitz constant. The scheme can be formu-
lated in terms of the operator

(1.2) Sh = (I − hf)−1(I + hp),

and the solution u(nh) of the evolution equation at time t = nh is then approxi-
mated by the n-term composition Sn

hη. The scheme constitutes an especially com-
petitive choice when discretizing systems of equations with the structure

(1.3) u̇i = fiui + pi(u1, . . . , us), for i = 1, . . . , s.

The gain of using the IMEX Euler scheme in this setting is that the coupled per-
turbations are handled explicitly and the implicit term decouples as

(

(I − hf)−1u
)

i
= (I − hfi)

−1ui,

which implies that the implicit step can be parallelized. Such systems, e.g., arise in
diffusion-reaction processes and typical examples of nonlinear diffusion terms fiui,
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which cannot be analyzed by means of the classical linear theory, are the porous
medium vector field ∆(|ui|

m−1
ui) and the r-Laplacian ∇ · (|∇ui|

r−2
∇ui).

While investigating the properties of the solution operators for nonlinear dissi-
pative evolution equations on Banach spaces [7], Crandall and Liggett proved that
the implicit Euler scheme converges as O(hq), with q = 1/2, when the initial value
η is in the domain of f + p. The aim of this paper is to conduct a similar conver-
gence analysis for the IMEX Euler scheme in the general framework of dissipative
operators. The idea is to prove that the IMEX Euler approximation is within a
O(h)-surrounding of the implicit Euler scheme, i.e., both schemes share the same
convergence order 1/2 ≤ q ≤ 1. Note that a convergence of order q < 1 is to be
expected if f + p has no further regularizing properties [19].

An introductional reading on the IMEX Euler scheme and higher-order gener-
alizations can be found in the monograph [13, Section IV.4]. Earlier results in
the literature include convergence and stability studies for implicit-explicit time
stepping schemes applied to various semilinear evolution equations [2, 3, 8, 17]. A
fully nonlinear result based on viscosity solution techniques is given in [14], where
the convergence order q = 1/2 is obtained for the scheme Sh = ehf (I + hp) when
applied to a class of nonlinear degenerate parabolic equations, including viscous
Hamilton–Jacobi equations with source terms. Convergence, but without explicit
order results, have also been established for a wide range of splitting schemes, e.g.,
Lie and Peaceman–Rachford, in the context of dissipative operators [5, 11, 15].
Further convergence results for splitting approximations of other types of problem
classes are surveyed in [12, 21].

2. Preliminaries

Let X be a real Banach space, with norm ‖·‖, and introduce the (left) semi-inner
product [·, ·] : X × X → R defined by

[u, v] = ‖v‖ lim
ε→0−

‖v + εu‖ − ‖v‖

ε
.

The semi-inner product exists for any Banach space X [9, p. 96], and it readily
satisfies the assertions below:

(i) [u, u] = ‖u‖2;

(ii) [αu, v] = α[u, v] for all α ≥ 0;

(iii) [u+ v, w] ≤ ‖u‖‖w‖+ [v, w].

Furthermore, to any operator g : D(g) ⊆ X → X we define the Lipschitz constant
L[g] ∈ [0,∞] as the smallest L satisfying

‖gu− gv‖ ≤ L‖u− v‖ for all u, v ∈ D(g).

We will interpret (1.1) as an abstract evolution equation on X with a vector field
f + p of the following type:

Assumption 2.1. The operator f : D(f) ⊆ X → X is m-dissipative, i.e.,

[fu− fv, u− v] ≤ 0 for all u, v ∈ D(f)

and the range condition R(I − hf) = X holds for every h > 0.

Assumption 2.2. The perturbation operator p : D(p) ⊆ X → X is Lipschitz
continuous, i.e., L[p] < ∞, and D(f) ⊆ D(p).
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The key observation when using the m-dissipative operator framework is that
the corresponding resolvent (I−hf)−1 becomes well defined and nonexpansive, i.e.,

L[(I − hf)−1] ≤ 1.

Note that the resolvent is nonexpansive if and only if [fu−fv, u−v] ≤ 0, and both
conditions are used in the literature when defining dissipativity. Proofs and further
equivalent definitions can be found in the survey [6, Section 1]. Moreover, if both
Assumptions 2.1 and 2.2 hold, then the perturbed resolvent

Rh =
(

I − h(f + p)
)−1

is also well defined and Lipschitz continuous for sufficiently small values of h, see
for example [10, Theorem 5.3]. For sake of completeness and in order to illustrate
the usage of the semi-inner product, we give the short proofs of these observations.

Lemma 2.3. If Assumption 2.1 hold, then I − hf : D(f) ⊆ X → X is bijective

and L[(I − hf)−1] ≤ 1 for all h > 0.

Proof. As I − hf is already assumed to be surjective, one has for every vi ∈ X an
element ui ∈ D(f) such that vi = (I − hf)ui and

‖u1 − u2‖
2 = [u1 − u2, u1 − u2] =

[

(v1 − v2) + h(fu1 − fu2), u1 − u2

]

≤ ‖v1 − v2‖‖u1 − u2‖+ h[fu1 − fu2, u1 − u2].

The dissipativity of f then yields the bound

(2.1) ‖u1 − u2‖ ≤ ‖v1 − v2‖ = ‖(I − hf)u1 − (I − hf)u2‖,

which implies that I − hf is injective and L[(I − hf)−1] ≤ 1. �

Lemma 2.4. If Assumptions 2.1 and 2.2 are valid, then Rh : X → D(f) ⊆ X is

well defined for all h > 0 such that hL[p] < 1, and L[Rh] ≤ (1− hL[p])−1 .

Proof. Let v ∈ X be fixed and consider the operator Th : X → X given by

Thw = v + hp(I − hf)−1w.

As L[Th] ≤ hL[p]L[(I − hf)−1], the operator Th is a contraction when hL[p] < 1.
By Banach fixed point theorem, there exists a unique w ∈ X such that Thw = w,
and u = (I − hf)−1w is then the unique solution of the equation

(

I − h(f + p)
)

u = v.

As v was chosen arbitrarily, the operator I − h(f + p) is a bijection for every h > 0
such that hL[p] < 1. The Lipschitz continuity of Rh follows as

‖u1 − u2‖ ≤ ‖v1 − v2‖+ hL[p]‖u1 − u2‖,

where vi =
(

I − h(f + p)
)

ui. Compare with the bound (2.1). �

3. Mild solutions and the implicit Euler scheme

Evolution equations governed by dissipative vector fields can be cast into the
theory of nonlinear semigroups. The central result, originally due to [7, Theorem I],
states the following: Let g : D(g) ⊆ X → X be a nonlinear operator with the
properties that g−MI is dissipative, with M ∈ R, and R(I−hg) = X for all h > 0
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such that hM < 1. To every such operator g one can relate a nonlinear semigroup
{etg}t≥0 via the limit

etgη = lim
m→∞

(

I − t

m
g
)−m

η for all η ∈ D(g).

The nonlinear operator etg maps D(g) into itself and L[etg] ≤ etM for every t ≥ 0.
The unique strong solution of the evolution equation governed by the operator g,

(3.1) v̇ = gv, v(0) = η,

can then be characterized as v(t) = etgη, whenever the Banach space X is reflexive
and η ∈ D(g). See for example [6, Corollary 1]. Even if the reflexivity of X
is dropped, i.e., (3.1) might not have a strong solution, the continuous function
t 7→ etgη is still well defined and one then refers to it as a mild solution of (3.1).
Surveys of the nonlinear semigroup theory can be found in [4, 6, 10].

The mild solution v(t) = etgη is in fact the limit of the implicit Euler discretiza-
tion of the evolution equation (3.1). The proof of Theorem I in [7] also yields an
error bound of the form

(3.2) ‖(I − hg)−nη − v(nh)‖ ≤ 2(hT )1/2e4MT ‖gη‖, 0 ≤ nh ≤ T,

when η ∈ D(g) and hM ≤ 1/2. Hence, the implicit Euler scheme has at least a
convergence order q = 1/2. The classical convergence order q = 1 can be recovered,
e.g., if one in addition assumes that X is a Hilbert space and the operator g is the
Gâteaux differential of a convex, lower semicontinuous and proper functional from
X into (−∞,∞], as proven in [19, Theorem 5].

4. Convergence analysis

Under Assumptions 2.1 and 2.2, our perturbed vector field g = f + p satisfies
that g − L[p]I is dissipative and the range condition R(I − hg) = X is valid for
every h > 0 such that hL[p] < 1. This is all a direct consequence of Lemma 2.4.
Hence, there exists a unique mild solution

(4.1) u(t) = et(f+p)η = lim
m→∞

Rm
t/mη

of the evolution equation (1.1), and our aim is to approximate it by employing the
IMEX Euler method given in (1.2). The main difficulty of conducting an error
analysis in the current context is that the mild solution lacks temporal regularity.
The only feasible strategy, which does not rely on artificial regularity assumptions,
is to first estimate the distance between the IMEX Euler approximation Sh and the
implicit Euler scheme Rh, and thereafter to employ the error bounds for the implicit
Euler approximation. To do so, we first collect some properties of the operator Rh.

Lemma 4.1. If Assumptions 2.1 and 2.2 hold, η ∈ D(f) and hL[p] < 1, then the

resolvent Rh satisfies

(i) ‖Rn
hη −Rn−1

h η‖ ≤ h(1− hL[p])−n‖(f + p)η‖ and

(ii) ‖Rn
hη − η‖ ≤ nh(1− hL[p])−n‖(f + p)η‖

for every positive integer n.

Proof. We first observe that

‖Rhη − η‖ = ‖Rhη −Rh

(

I − h(f + p)
)

η‖ ≤ h(1− hL[p])−1‖(f + p)η‖,
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and Assertion (i) now follows as

‖Rn
hη −Rn−1

h η‖ ≤ (1− hL[p])−n+1‖Rhη − η‖ ≤ h(1− hL[p])−n‖(f + p)η‖.

A direct consequence of (i) is the bound

‖Rn
hη − η‖ ≤

n
∑

k=1

‖Rk
hη −Rk−1

h η‖ ≤ h

n
∑

k=1

(1− hL[p])−k‖(f + p)η‖

≤ nh(1− hL[p])−n‖(f + p)η‖,

which proves Assertion (ii). �

With this in place, we can give an estimate of the distance between the two
schemes.

Lemma 4.2. If Assumptions 2.1 and 2.2 hold, η ∈ D(f) and hL[p] ≤ 1/2, then

‖Sn
hη −Rn

hη‖ ≤ hTL[p]e2TL[p]‖(f + p)η‖, 0 ≤ nh ≤ T.

Proof. In order to shorten the notation we introduce

un = Shun−1 = un−1 + hfun + hpun−1, u0 = η, and

vn = Rhvn−1 = vn−1 + hfvn + hpvn, v0 = η.

We can then bound the difference Sn
hη −Rn

hη = un − vn as

‖un − vn‖
2 = [un − vn, un − vn]

=
[

(un−1 − vn−1) + h(pun−1 − pvn) + h(fun − fvn), un − vn
]

≤
(

‖un−1 − vn−1‖+ hL[p]‖un−1 − vn‖
)

‖un − vn‖

+ h[fun − fvn, un − vn]

≤
(

(1 + hL[p])‖un−1 − vn−1‖+ hL[p]‖vn − vn−1‖
)

‖un − vn‖.

By the above bound and Lemma 4.1(i) we obtain that

‖un − vn‖ ≤ (1 + hL[p])‖un−1 − vn−1‖+ h2L[p](1− hL[p])−n‖(f + p)η‖

≤ ehL[p]‖un−1 − vn−1‖+ h2L[p]e2nhL[p]‖(f + p)η‖,

where the last inequality follows as (1−hL[p])−1 ≤ e2hL[p] for all hL[p] ≤ 1/2. Note
that u0 = v0 and 0 ≤ nh ≤ T . Hence, an n-fold repetition of the above argument
then yields

‖un − vn‖ ≤ h2L[p]
n
∑

k=1

e(n+k)hL[p]‖(f + p)η‖ ≤ hTL[p]e2TL[p]‖(f + p)η‖,

and the sought after bound is obtained. �

Combining Lemma 4.2 with the error bound (3.2) for the implicit Euler scheme
yields the following new convergence result for the IMEX Euler approximation of
the mild solution, without assuming any extra temporal regularity:

Theorem 4.3. Consider the implicit-explicit Euler approximation (1.2) of the mild

solution (4.1). If Assumptions 2.1 and 2.2 hold, η ∈ D(f) and hL[p] ≤ 1/2, then
the implicit-explicit Euler scheme has the same convergence order q ∈ [1/2, 1] as
the implicit Euler scheme, and

‖Sn
hη − u(nh)‖ ≤ C(T, η)(hq + h), 0 ≤ nh ≤ T.
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With the partition {0, h, . . . , Nh = T} of the bounded time interval [0, T ], the
above convergence result can also be stated in terms of the piecewise constant
function uh : [0, T ] → D(f) ⊆ X , where

(4.2) uh(t) = Sn
hη for t ∈

(

(n− 1)h, nh
]

and uh(0) = η.

Corollary 4.4. Under the assumptions of Theorem 4.3, the family of piecewise

constant functions (4.2) approximates the mild solution (4.1) with the same con-

vergence order q ∈ [1/2, 1] as the implicit Euler scheme, and

‖uh − u‖L∞(0,T ;X ) ≤ C(T, η)(hq + h).

Proof. Consider the partition {0, h, . . . , Nh = T}. For every t ∈ [0, T ] there is
then a nonnegative integer n and a τ ∈ [0, h) such that t = nh + τ . Hence, by
Theorem 4.3, we have

‖uh(t)− u(t)‖ = ‖Sn
hη − u(t)‖ ≤ ‖Sn

hη − u(nh)‖+ ‖u(nh+ τ)− u(nh)‖

≤ C(T, η)(hq + h) + ‖u(nh+ τ)− u(nh)‖.

Next, the semigroup property and the Lipschitz continuity of et(f+p) together with
Lemma 4.1(ii) imply that

‖u(nh+ τ)− u(nh)‖ = ‖enh(f+p)eτ(f+p)η − enh(f+p)η‖

≤ enhL[p] lim
m→∞

‖Rm
τ/mη − η‖

≤ enhL[p] lim
m→∞

τ
(

1− τ

m
L[p]

)−m
‖(f + p)η‖

= τetL[p]‖(f + p)η‖ ≤ heTL[p]‖(f + p)η‖.

The L∞(0, T ;X )-bound then follows as t was chosen arbitrarily in [0, T ]. �

5. Applications

5.1. Nonlinear equation systems. As already stated in the introduction, the
IMEX Euler scheme constitutes a competitive method choice when applied to non-
linear systems with the form given in (1.3). These systems can be interpreted as
abstract evolution equations (1.1) with an operator f : D(f) ⊆ X → X having the
structure

(fu)i = fiui, for i = 1, . . . , s,

where X = (X1 × . . . × Xs; ‖·‖ =
∑s

i=1‖·‖Xi
) and fi : D(fi) ⊆ Xi → Xi. If the

operators fi are m-dissipative, i.e., fulfilling Assumption 2.1, then the same holds
true for the full f .

Concrete examples of such systems occur in the context of nonlinear diffusion-
reaction processes and two standard diffusion terms fiui are the porous medium
vector field

fiui = ∆(|ui|
m−1

ui), m ≥ 1,

and the r-Laplacian

fiui = ∇ ·
(

|∇ui|
r−2

∇ui

)

, r ≥ 2.

If we consider a bounded domain Ω, with a sufficiently regular boundary, and ho-
mogeneous Dirichlet boundary conditions, then the porous medium vector field
becomes m-dissipative in both H−1(Ω) and L1(Ω), and the r-Laplacian is m-
dissipative in L2(Ω). Proofs and several other examples can be found in [4, Chap-
ters 2 and 3], [18, Chapters 3 and 4] and [22, Chapter 10].
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5.2. Locally Lipschitz continuous perturbations. Assumption 2.2, concerning
the Lipschitz continuity of the perturbation p, can actually be weakened when the
Banach space X has more structure. For example, assume that X is reflexive and
the perturbation p : X → X is locally Lipschitz continuous around the initial
value η ∈ D(f), i.e., for every r > 0 there exists a constant Lr[p] < ∞ such that

‖pu− pv‖ ≤ Lr[p]‖u− v‖ for all u, v ∈ Br(η),

where Br(η) = {u ∈ X : ‖u− η‖ ≤ r}. Next, consider the truncation [4, p. 150]

pru =







pu if ‖u− η‖ ≤ r,

p
(

r

‖u− η‖
(u− η) + η

)

if ‖u− η‖ > r.

The new operator pr : X → X is Lipschitz continuous, with

L[pr] ≤ 2Lr[p].

As X was assumed to be reflexive, the function ur(t) = et(f+pr)η is the unique
strong solution of the evolution equation

u̇r = (f + p)ur, ur(0) = η,

for all times t ∈ [0, T (η)] such that ur(t) ∈ Br(η). In order to characterize T (η) we
observe that

‖et(f+pr)η − η‖ ≤ lim
m→∞

‖Rm
t/mη − η‖ ≤ te2tLr [p]‖(f + p)η‖,

where the last inequality follows by Lemma 4.1(ii). Hence, ur(t) remains in Br(η)
for all times t such that te2tLr [p]‖(f + p)η‖ ≤ r, and T (η) can then be bounded
from below in terms of the Lambert W function:

(5.1) T (η) ≥ sup
r>0

1

2Lr(p)
W

(

2Lr(p)r

‖(f + p)η‖

)

.

If X is also a Hilbert space then one may consider locally Lipschitz continuous
perturbations which are only defined on D(f). In this case the Lipschitz continuous
extension pr : X → X , with L[pr] = Lr[p], can be obtained from Kirszbraun’s
lemma [20, Theorem 1.31] and the lower bound of T (η) is improved, as the factors
of 2 in (5.1) are avoided.

6. Numerical experiments

6.1. Efficiency and convergence for a nonlinear system. To illustrate the
efficiency of the IMEX Euler scheme, in comparison to implicit Euler, we consider
a diffusion-reaction system with the vector field f + p defined as

(fu)1 = d1∆u1, (pu)1 = α1u1(1− u1/γ)− β1u1u2,

(fu)2 = d2∆u2, (pu)2 = α2u1u2 − β2u2,

(fu)3 = ∆(|u3|
1/2

u3), (pu)3 = α3(u1 + u2)u3 − β3u3,

where d1 = 0.01, d2 = 0.02, α = (1, 20, 100), β = (5, 1, 50) and γ = 0.25. This rep-
resents a prey–predator–parasite model, where u1 and u2 are the densities of prey
and predators respectively. The third component, u3, represents the density of
parasites that feed on both the prey and on the predators. The species interact ac-
cording to standard Lotka–Volterra population dynamics. The prey and predators
are assumed to disperse in a random walk fashion throughout the two-dimensional
habitat, whereas the dispersion of the airborne parasites requires a more complex



8 E. HANSEN AND T. STILLFJORD

model. In the case of mosquito swarms, Okubo [16] suggests that the dispersion
process is governed by the porous medium operator, with m = 3/2.

The system is given over the unit square Ω = (0, 1)2 together with homogeneous
Dirichlet boundary conditions. If we interpret the system as an evolution equa-
tion (1.1) on the Banach space X = C(Ω) × C(Ω) × L1(Ω), then the operator f
becomes m-dissipative. Indeed, the porous medium operator is m-dissipative on
L1(Ω) as mentioned in Section 5. The Laplacian with Dirichlet boundary con-
ditions on C(Ω) is also m-dissipative as proven in [1, pp. 12–14]. Note that the
verification of the m-dissipativity requires a rather lengthy investigation in both
cases, and we therefore omit the proofs. Furthermore, the local Lipschitz continu-
ity of the perturbation p : X → X follows as C(Ω) ⊂ L∞(Ω) together with the
estimates

‖ujuk − vjvk‖C(Ω) ≤ ‖uj‖C(Ω)‖uk − vk‖C(Ω) + ‖vk‖C(Ω)‖uj − vj‖C(Ω) and

‖uju3 − vjv3‖L1(Ω) ≤ ‖uj‖L∞(Ω)‖u3 − v3‖L1(Ω) + ‖v3‖L1(Ω)‖uj − vj‖L∞(Ω),

where j, k = 1, 2.
To solve the problem numerically, we discretize it by standard central differences

over an equidistant grid with N ×N grid points for each of the three components
of the solution. We take N = 150. With ∆x = 1/(N + 1), the Laplacian is then
represented by the matrix T having the value −4/∆x2 on the main diagonal and
1/∆x2 on the first and Nth sub- and super-diagonals. The action of the porous

medium operator on the vector u is represented by Tv, where vi = |ui|
1/2

ui. The
solutions of the algebraic equations, obtained when evaluating the nonlinear implicit
parts of the time stepping schemes, are approximated by Newton’s method. We
finally choose the initial value η to have the components

η1 =

4
∑

k=1

e−150|x−x1,k|
2

, η2 = e−100|x−x2|
2

, η3 =
[

1− 800/9|x− x3|
2
]2

+
,

where (x1,1;x1,2;x1,3;x1,4) = ((0.35, 0.35); (0.35, 0.65); (0.65, 0.35); (0.65, 0.65)),
x2 = (0.57, 0.57), x3 = (0.55, 0.61) and [·]+ = max{·, 0}. Note that η3 is the

analytic solution to the homogeneous problem u̇ = α∆(|u|
1/2

u) at time t = 1, with
a weighted and translated Dirac delta as initial value [22, p. 5], which ensures that
η is an element of D(f).

The temporal errors at time t = nh = 0.1 are then computed for varying time
steps sizes h in the discrete X -norm. We use the implicit Euler approximation,
with h = 2−11, as a reference solution. The resulting errors and the execution
times are given in Figure 1. The results show that both the IMEX Euler and the
implicit Euler schemes have the convergence order q = 1. Furthermore, we observe
that for a given accuracy the effort to compute the IMEX Euler approximation is
significantly less than for the implicit Euler scheme, i.e., the IMEX Euler method
is indeed more efficient in the current context. It should be noted that this increase
in performance is without any parallellization of the procedure, hence even better
performance is possible.

6.2. Optimal convergence orders. In order to show that convergence of the
form O(hq), with 1/2 ≤ q < 1, is to be expected in general for the IMEX Euler
and the implicit Euler schemes, we look at the following problem: Let X = ℓ2 and
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Figure 1. The errors for the problem described in Section 6.1
in the discrete X -norm plotted against the step size h (left) and
against the execution time (right).

consider the linear evolution equation (1.1) governed by f + p, where

f(u1, u2, . . . , u2k−1, u2k, . . .) = (u2,−u1, . . . , ku2k,−ku2k−1, . . .) and

p(u1, u2, u3, . . .) = (u1, u2 + u1, u3 + u2, . . .).

This particular f is chosen as it is proven in [19, Example 3] that the implicit
Euler scheme has a convergence order q < 1 for the unperturbed problem given
that η ∈ D(f) \ D(f2). The reason for this order reduction is that the analytical
solution lacks temporal regularity for such a rough initial value. As the semi-inner
product coincides with the inner product on a Hilbert space, two straightforward
calculations yields that the operator f is m-dissipative. The operator p : X → X is
(globally) Lipschitz continuous, as it is the sum of the identity and the right shift
operator.

For our numerical experiment we truncate all ℓ2-series after 1000 components
and the errors are computed at time t = nh = 1 for different time step sizes h.
The reference solution is again given by the implicit Euler approximation, with
h = 2−12. For the initial value η = {1/k1.51}∞k=1 ∈ D(f) \ D(f2) one obtains
the errors presented in Figure 2. As seen from the experiment, both the IMEX
Euler and the implicit Euler schemes converge with an order q = 0.7, i.e., in full
agreement with Theorem 4.3.
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