
Computing the matrix exponential and the Cholesky factor
of a related finite horizon Gramian

Tony Stillfjord and Filip Tronarp

Centre for Mathematical Sciences, Lund University
October 21, 2023

Abstract
In this article, an efficient numerical method for computing finite-horizon control-

lability Gramians in Cholesky-factored form is proposed. The method is applicable
to general dense matrices of moderate size and produces a Cholesky factor of the
Gramian without computing the full product. In contrast to other methods applicable
to this task, the proposed method is a generalization of the scaling-and-squaring
approach for approximating the matrix exponential. It exploits a similar doubling
formula for the Gramian, and thereby keeps the required computational effort modest.
Most importantly, a rigorous backward error analysis is provided, which guarantees
that the approximation is accurate to the round-off error level in double precision.
This accuracy is illustrated in practice on a large number of standard test examples.

The method has been implemented in the Julia package FiniteHorizonGramians.jl,
which is available online under the MIT license. Code for reproducing the experimental
results is included in this package, as well as code for determining the optimal method
parameters. The analysis can thus easily be adapted to a different finite-precision
arithmetic.

1 Introduction
Consider a pair of matrices A ∈ Rn×n and B ∈ Rn×m. This article is concerned with the
numerical approximation of two matrix functions Φ(A) and G(A,B), defined by

Φ(A) = eA, (1a)

G(A,B) =
∫ 1

0
eAτBB∗eA

∗τ dτ, (1b)

where ∗ denotes the Hermitian conjugate. The first function, Φ, is just the matrix
exponential with specialized notation, which shall simplify the subsequent discussion. The
second function, G, is the controllability Gramian of the pair (A,B) over the unit interval,
and may equivalently be characterized as the solution at the end-point of the following
Lyapunov differential equation (Abou-Kandil et al., 2012)

Q̇(t) = AQ(t) +Q(t)A∗ +BB∗, Q(0) = 0, t ∈ [0, 1], (2)
that is, G(A,B) = Q(1). It is immediately clear that the controllability Gramian over
the interval [0, t] may be obtained by G(tA,

√
tB). The controllability Gramian is always

positive semi-definite. If additionally the pair (A,B) is controllable, then it is positive
definite. Therefore, G has a Cholesky factorization G(A,B) = U∗(A,B)U(A,B) for some
upper triangular matrix function U(A,B)1.

1However, when the Gramian fails to be positive definite, then the Cholesky factor is not unique.

1

1.1 Contribution

The aim is to develop a numerical algorithm for the computation of both matrix exponential,
Φ(A), and a upper triangular Cholesky factor, U(A,B), without forming G(A,B) as an
intermediate step. This has applications in numerically robust implementations of linear
filters and smoothers, via the so called square-root or array algorithms (Anderson and
Moore, 2012, Kailath et al., 2000), and possibly in robust state-space balancing and
truncation algorithms (Antoulas, 2005). The approach proposed here is based on a certain
doubling recursion for both Φ and G (Anderson and Moore, 2012), which extends the
scaling and squaring method of the matrix exponential (Al-Mohy and Higham, 2010,
Higham, 2005, 2008). This is similar to the doubling recursion for computing both the
matrix exponential and its Fréchet derivative (Higham, 2008, Section 10.6), which was
turned into a serviceable algorithm by computing the Fréchet derivative of the initial Padé
approximation of the matrix exponential by Al-Mohy and Higham (2009). However, this
provides no information on how to construct the initial approximations which are to be
doubled. That is accomplished here by drawing on a connection between the diagonal Padé
approximants and a certain Petrov–Galerkin approximation of Φ(At) on the interval [0, 1]
(Moore, 2011). This allows for the development of an algorithm that almost computes
Φ in the conventional way while also providing an initial approximation to the Cholesky
factor U , both which are then propagated through the doubling recursion.

The error analysis for Φ is the same as for the conventional method (Higham, 2005),
while the error analysis for G is more intricate. By lifting the problem to the computation
of the Gramian functional

G(Ã, B̃) =
∫ 1

0
eÃ(t)B̃(t)B̃∗(t)eÃ∗(t) dt, (3)

such that G(A,B) = G(At,B), it is demonstrated that the proposed method is back-
ward stable, in the sense that there are perturbations ∆A(t) and ∆B(t) such that the
approximated Gramian is given by

G(At+ ∆A,B + ∆B). (4)

Norm bounds on 2−sA are obtained which guarantee that the relative errors in the
perturbed data to G are bounded by unit roundoff in the supremum norm. The norm of
B turns out to be irrelevant for the backward errors. As the algorithm closely resembles
the classical scaling and squaring algorithm with Padé approximants, it is expected to be
appropriate to use under the same circumstances. This is not only corroborated by the
error analysis but also through numerical experiments.

The proposed algorithm and the analysis informing its design has been implemented in
the Julia programming language (Bezanson et al., 2017). The resulting software package,
FiniteHorizonGramians.jl2, is released under the MIT license.

The rest of the article is organized as follows. This section concludes with a discussion
on related work. The main ideas behind the algorithm construction are established in
Section 2. In Section 3, an error analysis is established and in Section 4 the rank properties
of the approximated Gramian in relation to the true Gramian are discussed. The final
algorithm design is settled in Section 5, where numerical experiments are also carried out,
and concluding remarks are given in Section 6.

2https://github.com/filtron/FiniteHorizonGramians.jl.

2

https://github.com/filtron/FiniteHorizonGramians.jl

1.2 Related work

The development of methods for computing matrix exponentials have a long history
(Moler and Van Loan, 1978). A prominent approach is based on the scaling and squaring
method using various base approximations (Moler and Van Loan, 2003), where the
Padé approximations have become preferred (Al-Mohy and Higham, 2010, Güttel and
Nakatsukasa, 2016, Higham, 2005, 2008). Computing the matrix exponential and some
associated quantity has been done by Al-Mohy and Higham (2009), in the case of the
Fréchet derivative. However, to the authors’ knowledge no such development has been
done for computing full Cholesky factors of finite horizon Gramians. In the following, the
literature closest to the present contribution is reviewed.

Differential Lyapunov equations. Many numerical methods have been suggested
for solving large-scale differential Lyapunov equations (2), e.g. BDF and Rosenbrock
methods (Benner and Mena, 2018, Mena, 2007), projection methods (Behr et al., 2019,
Kirsten and Simoncini, 2020, Koskela and Mena, 2020), exponential integrators (Li et al.,
2021), splitting schemes (Ostermann et al., 2019, Stillfjord, 2015, 2018), and numerical
quadrature (Stillfjord, 2015, 2018). Most of these methods are designed for differential
Riccati equations, but they reduce to methods for Lyapunov equations by setting the
nonlinear term to zero. The focus in all these works has been on low-rank solutions
G(A,B) = U∗U , where U∗ ∈ Rn×r with r � n and large n where even storing the solution
G(A,B) might be problematic. With the exception of the Krylov methods, these methods
lack rigorous error analyses. In practice, they typically produce approximations with
errors in the range [10−3, 10−12]. This is in contrast to the present interest, which is to
obtain approximations to full-rank upper triangular Cholesky factors U ∈ Rn×n, for n
moderately small, which are fully accurate in double precision arithmetic.

Algebraic Lyapunov equations. When A is Hurwitz, the controllability Gramian
over the interval [0, t] tends to the solution of a the algebraic Lyapunov equation as t→∞,
namely

AG+GA∗ = −BB∗.

For such equations, there is a similarly wide spread of numerical methods. For an
overview of the currently popular large-scale situation, see the surveys by Benner and
Saak (2013), Simoncini (2016). Most notable is, perhaps, the commonly used LRCF-ADI
method (Benner et al., 2008, Li and White, 2002). However, also here the focus is on
low-rank factorizations with U∗ ∈ Rn×r, and while the error analyses are more mature
than for the differential case they are generally not sharp.

The method of choice for small-scale algebraic Lyapunov equations still seems to be
the method developed by Hammarling (1982). It is a modification of the Bartels-Stewart
method (Bartels and Stewart, 1972) based on Schur factorization, and directly computes
the Cholesky factors of the solution. However, to the authors knowledge, there is no
extension to the case of differential Lyapunov equations.

2 Sketch of algorithm
In this section, the main ideas of the proposed algorithm are established. In particular,
the doubling formula for both Φ and G is established in Section 2.1. The doubling
recursion requires initial approximations of Φ and G, and such an approximation based on
a Petrov–Galerkin method in a shifted Legendre basis is reviewed in Section 2.2.

3

2.1 Doubling formulae

It is well known that the matrix exponential satisfies the doubling formula Φ(A) = Φ2(A/2),
which is a crucial component of the standard algorithm for numerically computing matrix
exponentials (Higham, 2005). It is perhaps less known that G also satisfies a doubling
formula, but such ideas have been around for a long time (Anderson and Moore, 2012,
Section 6.7). The result is as follows.

Lemma 1. The function G(A,B) satisfies the following doubling formula

G(A,B) = G(A/2, B/
√

2) + eA/2G(A/2, B/
√

2)eA∗/2. (5)

Proof. Split the integral defining G(A,B) in half:

G(A,B) =
∫ 1/2

0
eAτBB∗eA

∗τ dτ + eA/2
∫ 1

1/2
eA(τ−1/2)BB∗eA

∗(τ−1/2) dτ eA∗/2

= G(A/2, B/
√

2) + eA/2G(A/2, B/
√

2)eA∗/2.

Here, the last step is a change of variables τ 7→ τ − 1/2 in the second integral.

Now let s be an integer and define the following series of functions for k = 0, 1, . . . , s:

Φk(A) = Φ(A/2s−k),
Gk(A,B) = G(A/2s−k, B/

√
2s−k).

From the doubling formulae, a recursion for Φk and Gk is readily obtained:

Φk+1(A) = Φ2
k(A), (7a)

Gk+1(A,B) = Φk(A)Gk(A,B)Φ∗k(A) +Gk(A,B). (7b)

This suggests that an efficient algorithm for approximating Φ and G may be obtained
by simply adding some extra computations to the scaling and squaring algorithm for the
matrix exponential. However, the goal is to compute a Cholesky factor of the Gramian,
which can be achieved by factoring Gk(A,B) = Uk(A,B)∗Uk(A,B). By (7b), the factor
Uk(A,B) satisfies the recursion

U∗k+1(A,B)Uk+1(A,B) =
[
Uk(A,B)Φ∗k(A)

Uk(A,B)

]∗ [
Uk(A,B)Φ∗k(A)

Uk(A,B)

]
, (8)

and Uk+1(A,B) may then be obtained by taking the upper triangular factor of the QR
decomposition of the last factor on the right-hand side. For a complete algorithm, it
remains to obtain the initial approximations of Φ0(A) and U0(A,B). An approach for this
is developed in the following.

2.2 The initial approximations

In view of the doubling formula in (7), it remains to obtain initial approximations Φ̂0
and Ĝ0 of the matrix exponential Φ0 and the Gramian G0, respectively. For this purpose,
define As = A/2s and Bs = B/

√
2s. Then approximations are sought for

Φ0(A) = Φ(As),
G0(A,B) = G(As, Bs).

4

Consider an order q expansion of t 7→ Φ(Ast) in terms of Legendre polynomials Pk on the
unit interval:

Êq(t) =
q∑

k=0
CkPk(t) ≈ Φ(Ast). (10)

Then, since Pk(1) = 1 and ‖Pk‖2 = 1
2k+1 , Φ̂0(A) and Ĝ0(A,B) can be formed as

Φ̂0(A) = Êq(1) =
q∑

k=0
Ck, (11a)

Ĝ0(A,B) =
q∑

k=0

1
2k + 1CkBsB

∗
sC
∗
k . (11b)

Furthermore, the Gramian may be written as Ĝ0(A,B) = Ũ∗0 Ũ0, where

Ũ∗0 =
[
C0Bs C1Bs/

√
3 · · · CkBs/

√
2k + 1 · · · CqBs/

√
2q + 1,

]
(12)

and an upper triangular (not necessarily square) square-root factor of Ĝ0(A,B) may be
obtained by the QR factorization. There are various ways of constructing the expansion
coefficients in (10), such as projections in L2([0, 1]) or various Petrov–Galerkin type
methods. However, a very particular Petrov–Galerkin method gives Φ̂0(A) as a diagonal
Padé approximation (Moore, 2011). Namely, if the coefficients satisfy

I −3I 5I

−As 6I As 0 . . .
...

0 −As 10I
... As

...
... (4q − 2)I 0
0 0 −As (4q + 2)I

C̃0
C̃1
...
...

C̃q−1
C̃q

=

I
0
...
...
0
0

,

where C̃k = Ck/(2k + 1), then they are rational functions in As, say,

Ck(As) = D−1
q (As)Lk(As). (13)

Their sum evaluates to
q∑

k=0
Ck(As) = D−1

q (As)Nq(As) = rq(As), (14)

where Nq and Dq are the numerator and denominator, respectively, in the diagonal Padé
approximation rq of ez, see Moore (2011) and references therein3. Tables of coefficients for
computing Cq, Dq and Nq have been generated symbolically in Julia using the Symbolics.jl
package (Gowda et al., 2022). They are provided in Appendix B for q = 3, 5, 7, 9, 13.

3Unless it is necessary for the clarity of exposition, the explicit dependence on As in Ck(As), Dq(As)
and Nq(As) will henceforth be suppressed.

5

3 Error analysis
In this section, error analysis of the Gramian approximation is performed. From the
analysis of (Moore, 2011), it follows that

Vt(As) = −AsCq
∫ t

0
e−AsτPq(τ) dτ, (15a)

Êq(t) = eAst
(
I + Vt(As)

)
, (15b)

where for each t, Vt(As) is a matrix function in As. When ‖Vt(As)‖ < 1 a backwards error
of Êq is given by

Ft(As) = log
(
I + Vt(As)

)
, (16)

and since Vt(As) is a matrix function in As, then so is Ft(As). Furthermore, F1(As) is
the corresponding backward error for the Padé approximation to the matrix exponential,
since Êq(1) = rq(As) by (11a) and (14). Before proceeding, recall the following definitions
from Higham (2005).

• θq is a number such that 2s
∥∥F1(As)

∥∥ ≤ 2−53 whenever ‖As‖ ≤ θq.

• νq is the maximal radius around the origin for which the Padé denominator, Dq(z),
is analytic; νq = min{z : Dq(z) = 0}.

• ‖D−1
q (As)‖ ≤ ξq whenever ‖As‖ ≤ θq.

The following result was obtained by Higham (2005).

Proposition 1. Let s ≥ max
(
0, log2

‖A‖
θq

)
, then

e−Asrq(As) = I + V1(As) = eF1(As), (17)

where V1(As) and F1(As) are well-defined functions of As in the sense of matrix functions
which commute with As. Furthermore, Φ̂(A) = eA+2sF1(As) and∥∥2sF1(As)

∥∥
‖A‖

≤ 2−53 ≈ 1.1 · 10−16,

so that Φ̂(A) = r2s

q (As) approximates eA to full accuracy in double precision arithmetic,
in the backward error sense. Lastly, θq ≤ νq for q ≤ 21.

This result applies to the present approximation to the matrix exponential as it is
computed in exactly the same way. However, the error analysis for the Gramian is more
involved and shall be pursued in the following.

3.1 Backwards error of Gramian

It appears infeasible to obtain a backwards error for G directly. However, the problem can
be lifted to the computation of the Gramian functional (3), whose definition is restated:

G(A,B) =
∫ 1

0
eA(t)B(t)B∗(t)eA∗(t) dt.

Note that G(At,B) = G(A,B) and Ĝ0(A,B) is an approximation to G(Ast, Bs). Thus
if there are matrix-valued functions Â(t) and B̂(t) such that Ĝ(A,B) = G(Â(t), B̂(t)) a

6

backward result is obtained. It follows from the doubling formula and the discrete variation
of constants formula that Ĝ is given by

Ĝ =
2s−1∑
m=0

rmq (As)Ĝ0r
m
q (A∗s). (18)

The idea is to use this formula to construct Â(t) and B̂(t) such that

Ĝ = G(Â(t), B̂(t)).

This is done by chopping up the interval [0, 1] into 2s − 1 equally large sub-intervals of
length 2−s and then matching terms.

G(Â(t), B̂(t)) =
∫ 1

0
eÂ(t)B̂(t)B̂∗(t)eÂ∗(t) dt

=
2s−1∑
k=0

∫ (k+1)2−s

k2−s
eÂ(t)B̂(t)B̂∗(t)eÂ∗(t) dt

=
2s−1∑
k=0

2−s
∫ 1

0
eÂ(k2−s+t2−s)B̂(k2−s + t2−s)B̂∗(k2−s + t2−s)eÂ∗(k2−s+t2−s) dt

A match can be obtained by first setting

2−s
∫ 1

0
eÂ(k2−s+t2−s)B̂(k2−s + t2−s)B̂∗(k2−s + t2−s)eÂ∗(k2−s+t2−s) dt

= rkq (As)
(∫ 1

0
etAs(eFt(As)Bs)(eFt(As)Bs)∗etA

∗
s dt

)
rkq (A∗s)

= 2−sek2−sA+kF1(As)
(∫ 1

0
et2

−sA(eFt(As)B)(eFt(As)B)∗e2−stA∗ dt
)
ek2−sA∗+kF ∗

1 (As),

for k = 0, 1, . . . , 2s − 1, and then setting

eÂ(k2−s+t2−s)B̂(k2−s + t2−s) = ek2−sA+kF1(As)+t2−sAeFt(As)B,

for t ∈ [0, 1), or by change of variables t 7→ k2−s + t2−s

eÂ(t)B̂(t) = etA+kF1(As)eF2st−k(As)B, t ∈ [k2−s, (k + 1)2−s). (19)

From this, the following backwards result for the computed Gramian is found.

Proposition 2. Let ‖Vt(As)‖ < 1 on [0, 1], then

Ĝ(A,B) = G(At+ ∆A,B + ∆B),

where

∆A(t) = kF (1, As), (20a)
∆B(t) = (eF2st−k(,As) − I)B, (20b)

for t ∈ [k2−s, (k + 1)2−s) and k = 1, . . . , 2s − 1. Furthermore, the relative errors ∆A(t)
and ∆B(t), respectively, are bounded by

supt∈[0,1] ‖∆A(t)‖
supt∈[0,1] ‖tA‖

≤ 2s ‖F1(As)‖
‖A‖

, (21a)

supt∈[0,1] ‖∆B(t)‖
supt∈[0,1] ‖B‖

≤ sup
t∈[0,1]

‖Vt(As)‖ . (21b)

7

Proof. That Â(t) = tA + ∆A(t) and B̂(t) = B + ∆B(t) satisfy the matching condition
(19) is readily verified. Furthermore, a bound on the relative error of ∆A(t) is given by

supt∈[0,1] ‖∆A(t)‖
supt∈[0,1] ‖tA‖

=
maxk supt∈[k2−s,(k+1)2−s] ‖kF1(As)‖

‖A‖
= maxk ‖kF1(As)‖

‖A‖

= (2s − 1)‖F1(As)‖
‖A‖

≤ 2s ‖F1(As)‖
‖A‖

.

Finally, a bound for the relative error in ∆B is found by
supt∈[0,1] ‖∆B(t)‖

supt∈[0,1] ‖B‖
= max

k
sup

t∈[k2−s,(k+1)2−s]
‖(eF2st−k(As) − I)B‖

=
supt∈[0,1] ‖(eFt(As) − I)B‖

‖B‖
≤ sup

t∈[0,1]
‖eFt(As) − I‖ = sup

t∈[0,1]
‖Vt(As)‖ .

3.2 Controlling the backward error of the computed Gramian

In view of Propositions 1 and 2, it remains to find a maximal value ηq such that ‖As‖ < ηq
implies

sup
t∈[0,1]

‖Vt(As)‖ < 2−53. (22)

The scaling parameter s may then be selected as

s =
⌈

log2
‖A‖

min(ηq, θq)

⌉
, (23)

to ensure that both the errors in the computed matrix exponential and the Gramian are
at most unit roundoff (in double precision arithmetic). Before proceeding, the following
result giving a more explicit expression for Vt is required.
Proposition 3. For the last coefficient Cq in the Legendre expansion of eAst it holds that

Cq = q!
(2q)! (−As)

qD−1
q (As). (24)

Furthermore, an explicit expression for V is given by

Vt(As) = q!
(2q)! (−As)

q+1D−1
q (As)

∫ t

0
e−AsτPq(τ) dτ. (25)

Proof. Since Êq(1) = rq(As) it holds that

AsCq

∫ 1

0
eAs(1−τ)Pq(τ) dτ = eAs − rq(As) = (−1)q

(2q)! A
2q+1
s D−1

q (As)
∫ 1

0
eAsτ (1− τ)qτ q dτ,

where the last equality is the Padé remainder (Higham, 2008). By Rodrigues’ formula
the term Pq(τ) can be replaced by 1

q!
dq

dτq (τ2 − τ)q. Repeated integration by parts and
reversing the integration interval, thus shows that the left-hand side is given by

AsCq

∫ 1

0
eAs(1−τ) 1

q!
dq

dτ q (τ2 − τ)q dτ = AsCq
Aqs
q!

∫ 1

0
eAs(1−τ)(τ2 − τ)q dτ

= AsCq
Aqs
q!

∫ 1

0
eAsττ q(1− τ)q dτ.

8

Consequently, the above equality reads

AsCq
Aqs
q!

∫ 1

0
eAsττ q(1− τ)q dτ = (−1)q

(2q)! A
2q+1
s D−1

q (As)
∫ 1

0
eAsτ (1− τ)qτ q dτ,

and the statement follows by matching terms.

Proposition 3 ensures that Vt is analytic in As in the neighbourhood ‖As‖ < νq.
Consequently, it has an absolutely convergent power series expansions, which is more
conveniently expressed using the following auxiliary function

ψ(t, η) = q!
(2q)! (−η)q+1D−1

q (η)e−ηt, (26)

so that
Vt(As) =

∫ t

0
ψ(τ,As)Pq(τ) dτ.

The function ψ is analytic in the same region as Vt is. Therefore,

ψ(t, η) =
∞∑

n=q+1
ψn(t)ηn,

and a bound on the norm of Vt is obtained by

V̄n(t) =
∣∣∣∣∫ t

0
ψn(τ)Pq(τ) dτ

∣∣∣∣ , (27a)

V̄ (t, η) =
∞∑

n=q+1
V̄n(t)ηn, (27b)

β(η) = sup
t∈[0,1]

V̄ (t, η), (27c)

sup
t∈[0,1]

‖Vt(As)‖ ≤ β(‖As‖). (27d)

It is clear that t 7→ V̄ (t,‖As‖) has extrema at the zeros z1, z2, . . . , zq of the Legendre
polynomial Pq. However, it is not clear that these are the only extrema, even though
numerical experiments certainly suggest this is the case. In any case, define z0 = 0
and zq+1 = 1 and form grids constructed by uniformly placing p points in the intervals
(z0, z1), . . . , (zq, zq+1), totalling (q + 1)(p− 1) unique points. Let t1, . . . , t(q+1)(p−1) be the
union of these grids, and approximate β by

β(η) ≈ β̂(η) = max
i
V̄ (ti, η). (28)

Maximal positive numbers ηq for q = 1, . . . , 21 such that β̂(η) ≤ 2−53 are computed, for
p = 2, 26, 27, in the Julia programming language (Bezanson et al., 2017), by using arbitrary
precision arithmetic, truncating the sum (27b) at the 150th order term, and computing
the coefficients V̄n by Taylor mode automatic differentiation (Benet and Sanders, 2019).
The results are tabulated in table 3.2 along with the quantities θq, νq, and ξq obtained
by (Higham, 2005). As the maximal ηq were the same for all selected p only the result
for p = 2 is presented. Additionally, the series ηq and θq for q = 1, . . . , 21 are drawn in
Figure 3.2. It is evident that ensuring that the Gramian is computed to unit roundoff
precision implies a more aggressive scaling of A, particularly for 2 ≤ q ≤ 11, while for
q = 1 and q ≥ 12 only 2 additional downscalings are required.

9

Table 1: Maximal values θq and ηq of ‖2−sA‖ such that 2s
∥∥F1(As)

∥∥ ≤ 2−53 and
supt∈[0,1] ‖Vt(As)‖ ≤ 2−53, respectively, νq = min{|z| : Dq(z) = 0}, and upper bound
ξq for ‖D−1

q (A)‖.
q 1 2 3 4 5 6 7 8 9 10
θq 3.7e-8 5.3e-4 1.5e-2 8.5e-2 2.5e-1 5.4e-1 9.5e-1 1.5e0 2.1e0 2.8e0
ηq 1.8e-8 2.4e-5 6.7e-4 5.3e-3 2.1e-2 6.0e-2 1.3e-1 2.4e-1 4.1e-1 6.2e-1
νq 2.0e0 3.5e0 4.6e0 6.0e0 7.3e0 8.7e0 9.9e0 1.1e1 1.3e1 1.4e1
ξq 1.0e0 1.0e0 1.0e0 1.0e0 1.1e0 1.3e0 1.6e0 2.1e0 3.0e0 4.3e0
q 11 12 13 14 15 16 17 18 19 20 21
θq 3.6e0 4.5e0 5.4e0 6.3e0 7.3e0 8.4e0 9.4e0 1.1e1 1.2e1 1.3e1 1.4e1
ηq 8.9e-1 1.2e0 1.5e0 1.9e0 2.4e0 2.9e0 3.4e0 4.0e0 4.6e0 5.2e0 5.8e0
νq 1.5e1 1.7e1 1.8e1 1.9e1 2.1e1 2.2e1 2.3e1 2.5e1 2.6e1 2.7e1 2.8e1
ξq 6.6e0 1.0e1 1.7e1 3.0e1 5.3e1 9.8e1 1.9e2 3.8e2 8.3e2 2.0e3 6.2e3

q
0 5 10 15 20

2-20

2-10

20

q
0 5 10 15 20

1

2

3

4

5

𝜂q

𝜃q

log2𝜃 − log2𝜂

⌈log2𝜃 − log2𝜂⌉

Figure 1: The series θq and ηq for q = 1, . . . , 21 (right), and the difference in the scaling
parameter s when selected to satisfy ‖As‖ ≤ θq or ‖As‖ ≤ ηq, respectively.

10

4 Rank properties of the approximate Gramian
The discussion has hitherto been centred on controlling the error. However, another
important aspect is the rank properties of the Gramian. The pair (A,B) is said to be
completely controllable if the controllability matrix

C(A,B) =
[
B AB · · · An−1B

]
, (29)

is of full rank, which is equivalent to the Gramian being of full rank (Anderson and Moore,
2007). In fact, C(A,B) and G(A,B) share nullspace. From the perspective of applications
in control and estimation it thus interesting to investigate whether the method produces
an approximation, Ĝ, that mathematically reproduces the controllability properties of
(A,B). It follows from the variation of constants representation (18) and (12), that the
computed Gramian may be written as Ĝ = Ĉq,sĈ∗q,s with

Ũ∗0 = D−1
q (As)

[
L0(As)B · · · Lk(As)B/

√
2k + 1 · · · Lq(As)B/

√
2q + 1

]
(30a)

Ĉq,s =
[
rq(As)Ũ∗0 r2

q(As)Ũ∗0 · · · r2s−1
q (As)Ũ∗0 .

]
(30b)

The computed Gramian resembles the outer product of the controllability matrix with
itself, except for the fact that the matrix is formed with a basis different from the monomial
one. More specifically, for k = 0, 1, . . . , q and m = 0, 1, . . . , 2s − 1, define the functions

ek,m(z) = 1√
(2k + 1)2s

rmq (z2−s)D−1
q (zs−s)Lk(zs−s). (31)

Then Ĉq,s is a block matrix consisting of the following blocks:

ek,m(A)B, k = 0, 1, . . . , q, m = 0, 1, . . . , 2s − 1.

The polynomials Lk are of degree at most q, from which it follows that the functions
ẽk,m(z) = D2s

q (z2−s)ek,m(z) are polynomials of at most degree 2sq. If there is an s such
that they span the space of polynomials of degree at most n − 1, then there exists an
invertible matrix T such that

D2s

q (As)Ĉq,sT =
[
C(A,B) 0

]
, (32)

and consequently, the rank properties in the computed Gramian are the same as in the
exact Gramian. In order to find such an s, the following assumption is required.

Assumption 1. The polynomials L0, L1, . . . , Lq are linearly independent.

The table of coefficients in Appendix B certainly verifies this assumption for q =
3, 5, 7, 9, 13. Furthermore, the following result on the zeros of Nq and Dq shall prove useful.

Lemma 2. The polynomials Nq and Dq have no zeros in common.

Proof. Ehle (1969, Theorem 2.1, p. 22) states that all the zeros of Nq are in the open left
half plane. Therefore, by the well known relation, Dq(z) = Nq(−z), all zeros of Dq are in
the open right half plane, which gives the desired conclusion.

It remains to study the span of the union of the following sets

Πm =
{
ẽ0,m(z), ẽ1,m(z), . . . , ẽq,m(z)

}
, m = 0, 1, . . . , 2s − 1. (33)

11

Lemma 3. Let Assumption 1 hold. Then Πm are sets of linearly independent functions
for m = 0, 1, . . . , 2s − 1.

Proof. Let vk be some coefficients for the expansion of the zero function in the set Πm,
that is

0 =
q∑

k=0
vkr

m
q (z)Lk(z)D2s−1

q (z) ⇐⇒ 0 =
q∑

k=0
vkLk(z),

which by assumption is equivalent to vk = 0 for k = 0, 1, . . . , q.

Proposition 4. For the sets Πm, m = 0, 1, . . . , 2s − 1, the following holds:

dim span∪2s−1
m=0Πm = q2s + 1.

Proof. The idea is to show that span Πm and span Πm+l for l ≥ 1 can only intersect for
l = 1 and that the dimension of this intersection is 1. The conclusion is then obtained by
use of Lemma 3. Expanding the zero function in the set Πm ∪Πm+l gives

0 =
q∑

k=0
vkr

m
q (z)Lk(z)D2s−1

q (z) +
q∑

k=0
wkr

m+l
q (z)Lk(z)D2s−1

q (z),

which is equivalent to

0 = Dl
q(z)

q∑
k=0

vkLk(z) +N l
q(z)

q∑
k=0

wkLk(z). (34)

Dq and Nq are polynomials of degree q, which by Lemma 2 have no zeros in common.
Therefore (34) is impossible to satisfy for l ≥ 2 unless vk = wk = 0 for k = 0, 1, . . . , q. For
l = 1 the only possibility is that, for some arbitrary constant c,

q∑
k=0

vkLk(z) = ±cNq(z), (35a)

q∑
k=0

wkLk(z) = ∓cDq(z). (35b)

which concludes the proof.

The consequence of Proposition 4 is that the number of squarings s, needs to satisfy

s ≥
⌈

log2
n− 1
q

⌉
, (36)

for the computed Gramian to have the same rank as the exact one.

5 Design of algorithm and numerical experiments
The goal of this section is to arrive at a final design of the algoritm, with the discussion
in sections 3 and 4 in mind. Other than achieving a backward error of at most unit
round-off and a computed Gramian that preserves the controllability properties of (A,B),
other design criteria involve minimizing the number of squarings to avoid the over-scaling
phenomena, while also staying as close as possible to the conventional algorithm for the
matrix exponential. Therefore, only the orders q = 3, 5, 7, 9, 13 are considered.

12

Pre-processing. For the input matrices A ∈ Rn×n and B ∈ Rn×m, it is assumed that
m ≤ n. This is not an unreasonable assumption, as otherwise B would be overparametrized.
More specifically, if m > n, then the QR decomposition of B∗ is given by

B∗ = QB∗B̃∗, (37)

where QB∗ ∈ Rm×n and B̃∗ ∈ Rn×n. It is evident from the definition (1b) that

G(A,B) = G(A, B̃).

It is therefore reasonable to assume that m ≤ n, at least after initial pre-processing of the
matrix B. Furthermore, the Gramian is invariant under similarity transforms. That is,
given an invertible matrix T ,

G(TAT−1, TB) = TG(A,B)T−1. (38)

It is common in implementations of the matrix exponential to select T as a so-called
balancing transform. However, the discussion of (Al-Mohy and Higham, 2011, p. 496)
recommends that balancing should not be used by default, and is therefore not included
as a pre-processing step of the algorithm proposed here.

Order adaptation. In view of the conclusions of the error analysis of Section 3, modifi-
cations of the order adaption in the conventional algorithm (Higham, 2005) are required.
Namely, as ηq < θq for 1 ≤ q ≤ 21, the scaling parameter needs to be selected as

s ≥ dlog2(‖A‖ /ηq)e. (39)

Furthermore, in view of the discussion in Section 4, the scaling parameter also needs to
satisfy the bound (36). Therefore, in order to avoid the over-scaling phenomena, it appears
numerically advantageous to simply select the smallest q that satisfies

‖A‖ ≤ ηq, (40a)
n ≤ q + 1, (40b)

for q = 3, 5, 7, 9. If no such q is found then the order 13 method is used and the scaling
parameter is selected as

s =
⌈

log2 max
(‖A‖
ηq

,
n− 1
q

)⌉
. (41)

Implementing the initial values. From the table of coefficients, the polynomials Lk
are even for even k and odd for odd k for q = 3, 5, 7, 9, 13. Consequently, the same
evaluation strategy as used by Higham (2005) may be adopted, and the initial Cholesky
factor of the Gramian may be accumulated from B and A2B for q = 3, 5, 7, 9. Similarly,
for q = 13, the initial Cholesky factor is accumulated from B,A2B,A4B,A6B.

5.1 Numerical experiments

The numerical performance of the proposed method is examined on a series of test pairs
(A,B). The backward error analysis of Proposition 2 suggests that B is of little importance
and may thus be chosen arbitrarily. Suitable collections of test matrices for A shall later be
defined in various ways. Unlesss otherwise stated, a ground-truth is obtained by computing
the Gramian via the matrix fraction decompositon (Axelsson and Gustafsson, 2014) in

13

n
0 10 20 30

10-15.75

10-15.50

10-15.25

Gramian

n
0 10 20 30

Cholesky factor

Figure 2: The results of experiment 0. The relative error in the computed Gramians
(left) and Cholesky factors (right).

arbitrary precision (Fousse et al., 2007), and projecting the result on the set of Hermitian
matrices. The matrix exponential for the ground-truth is computed using the software
package ExponentialUtilities.jl 4 (Rackauckas and Nie, 2017) with the generic method
using a Padé approximation of order 13. All relative errors are computed in the 1-norm.

Experiment 0. The matrices A ∈ Rn×n and B ∈ Rn×1 are defined as

Ai,j =

1, if j + 1 = i,

0, otherwise
and Bi =

1, if i = 1,
0, otherwise

.

This experiment serves as a “unit test” in the sense that A is nilpotent of index n and the
base approximations of order q are exact for nilpotent matrices of order q+1. Furthermore,
as eAtB =

[
1, t, t2/2, · · · , tn−1/(n− 1)!

]∗
, the Gramian and its Cholesky factor can

be computed in closed form by switching to the Legendre basis. The dimension n ranges
from 2 to 30.

The relative errors are shown in Figure 2. It can be seen that the proposed algorithm
performs to an acceptable precision, just as predicted by the error analysis. Furthermore,
the error in the computed Cholesky factor is almost half an order of magnitude smaller
than that of the Gramian.

Experiment 1. A is selected from a collection of 10×10 matrices provided by a subset of
the “builtin” matrices of the software package MatrixDepot.jl (Zhang and Higham, 2016).
The matrices that were excluded were either sparse matrices, not conforming to the general
API, or matrices with positive eigenvalues and very large norms, for which the excessive
amount of doublings lead to numerical problems. The full list of excluded matrices is given
in Appendix A. The matrix B is selected as a 10×m matrix with m = 1, 5, 10, and the
elements drawn independently from the standard Normal distribution. The experiment
is conducted 50 times for each selection of m so that the effect of randomization can be
assessed. Scatter plots of the relative errors over all simulations are shown in Figure 3. It is
again evident that the proposed algorithm performs in accordance with expectation. One
exception is the matrix numbered 22. This matrix is known as, "invol", it has positive
eigenvalues equal to one and a 1-norm resulting in 25 doublings, which is problematic but

4The default implementation of the matrix exponential in LinearAlgebra.jl precludes the use of arbitrary
precision floats.

14

0 10 20 30 40

10-15

10-10

10-5

m = 1

0 10 20 30 40

m = 5

0 10 20 30 40

m = 10

Figure 3: The results of experiment 1. Every value on the horizontal axis corresponds to
a specific matrix A from the builtin data set in MatrixDepot.jl. For each A, there are 50
grey dots, each corresponding to the relative error in the computed Gramian for a single
randomly generated matrix B.

0 50 100
10-16

10-15

10-14

𝜆 = 0.5

0 50 100

𝜆 = 1.5

0 50 100

𝜆 = 5.0

Figure 4: The results of experiment 2. The relative error in the computed Gramians,
plotted against the dimension of the Laguerre network (42).

does not result in complete failure. The result also demonstrates that the algorithm is
rather insensitive to the selection of B, except for a few outliers in the case m = 1.

Experiment 2. The matrices A ∈ Rn×n and B ∈ Rn×1 are defined by

Ai,j =

−2λ, i > j,

−λ, i = j,

0, i < j

, (42a)

B =
√

2λ
[
1 1 · · · 1

]∗
. (42b)

This is a so called Laguerre network. The parameter λ is a positive number that is selected
from {1.0, 2.5, 5.0} and n ranges from 1 to 100. A is Hurwitz, and it is readily verified
that the identity matrix solves the algebraic Lyapunov equation associated with (A,B),

A+A∗ = −BB∗.

Consequently, the finite horizon Gramian may be computed by the formula (Farrell and
Livstone, 1993, Lemma 1)

G(A,B) = I − eAeA∗
. (43)

This formula is used to compute a reference solution in arbitrary precision and the results
are shown in Figure 4. Whereas there is a loss of precision as the dimension grows, the
resulting error appears to be acceptable up to dimension at least 100.

6 Conclusions
In this article, a “scaling and squaring” method has been developed for computing the
Cholesky factor of the finite horizon Gramian associated with the pair of matrices (A,B).

15

The method computes the matrix exponential, eA, in almost the same manner as the
conventional algorithm (Higham, 2005). Furthermore, a backward error analysis was made,
which ensures that both the matrix exponential and the Gramian are computed to within
unit roundoff in double precision arithmetic. As the error analysis and algorithm design
piggybacks on the development of the conventional algorithm for computing the matrix
exponential, it is expected that the algorithm for the Cholesky factor of the Gramian
will have similar numerical performance in practice. This has indeed been demonstrated
through a set of experiments. The doubling recursion for both the matrix exponential and
the Gramian both require one matrix multiplication each, and the former additionally
requires a QR decomposition. Consequently, the doubling phase is expected to be equally
problematic for both quantities. Nevertheless, in the numerical experiments the algorithm
has peformed to satisfaction.

Acknowledgements
TS and FT were partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

References
Abou-Kandil, H., Freiling, G., Ionescu, V., and Jank, G. (2012). Matrix Riccati Equations
in Control and Systems Theory. Birkhäuser.

Al-Mohy, A. H. and Higham, N. J. (2009). Computing the Fréchet derivative of the matrix
exponential, with an application to condition number estimation. SIAM J. Matrix Anal.
Appl., 30(4):1639–1657.

Al-Mohy, A. H. and Higham, N. J. (2010). A new scaling and squaring algorithm for the
matrix exponential. SIAM J. Matrix Anal. Appl., 31(3):970–989.

Al-Mohy, A. H. and Higham, N. J. (2011). Computing the action of the matrix exponential,
with an application to exponential integrators. SIAM journal on Scientific Computing,
33(2):488–511.

Anderson, B. D. O. and Moore, J. B. (2007). Optimal Control: Linear Quadratic Methods.
Courier Corporation.

Anderson, B. D. O. and Moore, J. B. (2012). Optimal Filtering. Courier Corporation.

Antoulas, A. C. (2005). Approximation of Large-scale Dynamical Systems. SIAM.

Axelsson, P. and Gustafsson, F. (2014). Discrete-time solutions to the continuous-time
differential Lyapunov equation with applications to Kalman filtering. IEEE Transactions
on Automatic Control, 60(3):632–643.

Bartels, R. H. and Stewart, G. W. (1972). Algorithm 432: Solution of the matrix equation
AX + XB = C. Commun. ACM, 15(9):820–826.

Behr, M., Benner, P., and Heiland, J. (2019). Solution formulas for differential Sylvester
and Lyapunov equations. Calcolo, 56:51.

Benet, L. and Sanders, D. P. (2019). TaylorSeries.jl: Taylor expansions in one and several
variables in Julia. J. Open Source Softw., 4(36):1043.

16

Benner, P., Li, J.-R., and Penzl, T. (2008). Numerical solution of large-scale Lyapunov
equations, Riccati equations, and linear-quadratic optimal control problems. Numer.
Linear Algebra Appl., 15(9):755–777.

Benner, P. and Mena, H. (2018). Numerical solution of the infinite-dimensional LQR
problem and the associated Riccati differential equations. J. Numer. Math., 26(1):1–20.

Benner, P. and Saak, J. (2013). Numerical solution of large and sparse continuous time
algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitt.,
36(1):32–52.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A fresh approach
to numerical computing. SIAM Rev., 59(1):65–98.

Ehle, B. L. (1969). On Padé approximations to the exponential function and A-stable
methods for the numerical solution of initial value problems. PhD thesis, University of
Waterloo Waterloo, Ontario.

Farrell, J. and Livstone, M. (1993). Exact calculations of discrete-time process noise
statistics for hybrid continuous/discrete time applications. In Proceedings of 32nd IEEE
Conference on Decision and Control, pages 857–858. IEEE.

Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., and Zimmermann, P. (2007). MPFR:
A multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw., 33(2):13–es.

Gowda, S., Ma, Y., Cheli, A., Gwóźzdź, M., Shah, V. B., Edelman, A., and Rackauckas,
C. (2022). High-performance symbolic-numerics via multiple dispatch. ACM Commun.
Comput. Algebra, 55(3):92–96.

Güttel, S. and Nakatsukasa, Y. (2016). Scaled and squared subdiagonal Padé approxima-
tion for the matrix exponential. SIAM J. Matrix Anal. Appl., 37(1):145–170.

Hammarling, S. J. (1982). Numerical solution of the stable, non-negative definite Lyapunov
equation. IMA J. Numer. Anal., 2(3):303–323.

Higham, N. J. (2005). The scaling and squaring method for the matrix exponential
revisited. SIAM J. Matrix Anal. Appl., 26(4):1179–1193.

Higham, N. J. (2008). Functions of matrices: theory and computation. SIAM.

Kailath, T., Sayed, A. H., and Hassibi, B. (2000). Linear estimation. Prentice Hall.

Kirsten, G. and Simoncini, V. (2020). Order reduction methods for solving large-scale
differential matrix Riccati equations. SIAM J. Sci. Comput., 42(4):A2182–A2205.

Koskela, A. and Mena, H. (2020). Analysis of Krylov subspace approximation to large-scale
differential Riccati equations. Electron. Trans. Numer. Anal., 52:431–454.

Li, D., Zhang, X., and Liu, R. (2021). Exponential integrators for large-scale stiff Riccati
differential equations. J. Comput. Appl. Math., 389:113360.

Li, J.-R. and White, J. (2002). Low rank solution of Lyapunov equations. SIAM J. Matrix
Anal. Appl., 24(1):260–280.

17

Mena, H. (2007). Numerical Solution of Differential Riccati Equations Arising in Optimal
Control of Partial Differential Equations. PhD thesis, Escuela Politécnica Nacional,
Quito, Ecuador. Available as ISBN: 978-9978-383-09-4.

Moler, C. and Van Loan, C. (1978). Nineteen dubious ways to compute the exponential of
a matrix. SIAM Rev., 20(4):801–836.

Moler, C. and Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of
a matrix, twenty-five years later. SIAM Rev., 45(1):3–49.

Moore, G. (2011). Orthogonal polynomial expansions for the matrix exponential. Linear
algebra appl., 435(3):537–559.

Ostermann, A., Piazzola, C., and Walach, H. (2019). Convergence of a low-rank Lie-Trotter
splitting for stiff matrix differential equations. SIAM J. Numer. Anal., 57(4):1947–1966.

Rackauckas, C. and Nie, Q. (2017). DifferentialEquations.jl – A performant and feature-
rich ecosystem for solving differential equations in Julia. The Journal of Open Research
Software, 5(1).

Simoncini, V. (2016). Computational methods for linear matrix equations. SIAM Rev.,
58(3):377–441.

Stillfjord, T. (2015). Low-rank second-order splitting of large-scale differential Riccati
equations. IEEE Trans. Automat. Control, 60(10):2791–2796.

Stillfjord, T. (2018). Adaptive high-order splitting schemes for large-scale differential
Riccati equations. Numer. Algorithms, 78(4):1129–1151.

Zhang, W. and Higham, N. J. (2016). Matrix Depot: an extensible test matrix collection
for Julia. PeerJ Computer Science, 2.

A Additional information on experiments
As pointed out in the main text, some matrices from MatrixDepot.jl were excluded from
experiment 1. It was the following matrices:

[
"blur",
"hadamard",
"phillips",
"rosser",
"neumann",
"parallax",
"poisson",
"wathen",
"invhilb",
"vand",
"golub",
"magic",
"pascal",

]

18

The latter five were problematic in the sense of having eigenvalues with positive real
part and very large norms. The former matrices were excluded on the grounds of not
conforming with the general API and were usually sparse matrices.

B Coefficient tables for the Legendre expansion of the Ma-
trix exponential

In this section, the necessary quantities to implement the initial approximation of the
matrix exponential and the Gramian are listed for q = 3, 5, 7, 9, 13. Recall that the initial
approximation of the matrix exponential is given by the diagonal Padé approximant

rq(z) = Nq(z)
Dq(z)

= Ñq(z)
D̃q(z)

,

where Nq and Dq are the Padé numerator and denominator, respectively. The numerator
Ñq and denominator D̃q are scaled versions so that all coefficients are integers. The
coefficients of Ñq are listed as pade_num. Furthemore, the coefficients Ck(z) are given by

Ck(z) = L̃k(z)
D̃q(z)

,

where L̃k are polynomials whose coefficients are listed as the rows of the matrix referred
to as leg_nums. They are rescaled versions of Lk, such that L̃k(z)

D̃q(z) = Lk(z)
Dq(z) . Lastly, the

square norms of the Legendre polynomials are listed as sqr_norms, that is 1, 3, . . . , 2k +
1, . . . , 2q + 1.

B.1 Coefficient tables for q = 3
pade_num = [120, 60, 12, 1]
leg_nums = [120 0 2 0; 0 60 0 0; 0 0 10 0; 0 0 0 1]
sqr_norms = [1, 3, 5, 7]

B.2 Coefficient tables for q = 5
pade_num = [30240, 15120, 3360, 420, 30, 1]
leg_nums =
[
30240 0 840 0 2 0
0 15120 0 168 0 0
0 0 2520 0 10 0
0 0 0 252 0 0
0 0 0 0 18 0
0 0 0 0 0 1
]
sqr_norms = [1, 3, 5, 7, 9, 11]

B.3 Coefficient tables for q = 7
pade_num = [17297280, 8648640, 1995840, 277200, 25200, 1512, 56, 1]
leg_nums =
[
17297280 0 554400 0 3024 0 2 0
0 8648640 0 133056 0 324 0 0
0 0 1441440 0 11880 0 10 0
0 0 0 144144 0 616 0 0
0 0 0 0 10296 0 18 0
0 0 0 0 0 572 0 0

19

0 0 0 0 0 0 26 0
0 0 0 0 0 0 0 1
]
sqr_norms = [1, 3, 5, 7, 9, 11, 13, 15]

B.4 Coefficient tables for q = 9
pade_num =
[
17643225600,
8821612800,
2075673600,
302702400,
30270240,
2162160,
110880,
3960,
90,
1,
]
leg_nums =
[
17643225600 0 605404800 0 4324320 0 7920 0 2 0
0 8821612800 0 155675520 0 617760 0 528 0 0
0 0 1470268800 0 15444000 0 34320 0 10 0
0 0 0 147026880 0 960960 0 1092 0 0
0 0 0 0 10501920 0 42120 0 18 0
0 0 0 0 0 583440 0 1320 0 0
0 0 0 0 0 0 26520 0 26 0
0 0 0 0 0 0 0 1020 0 0
0 0 0 0 0 0 0 0 34 0
0 0 0 0 0 0 0 0 0 1
]
sqr_norms = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

B.5 Coefficient tables for q = 13
pade_num =
[
64764752532480000,
32382376266240000,
7771770303897600,
1187353796428800,
129060195264000,
10559470521600,
670442572800,
33522128640,
1323241920,
40840800,
960960,
16380,
182,
1,
]
leg_nums =
[
64764752532480000 0 2374707592857600 0 21118941043200 0 67044257280 0 81681600 0 32760 0 2 0
0 32382376266240000 0 647647525324800 0 3620389893120 0 7449361920 0 5569200 0 1080 0 0
0 0 5397062711040000 0 69390806284800 0 260727667200 0 352716000 0 153000 0 10 0
0 0 0 539706271104000 0 4797389076480 0 12443820480 0 10852800 0 2380 0 0
0 0 0 0 38550447936000 0 245321032320 0 439538400 0 232560 0 18 0
0 0 0 0 0 2141691552000 0 9884730240 0 11938080 0 3344 0 0
0 0 0 0 0 0 97349616000 0 324498720 0 248976 0 26 0
0 0 0 0 0 0 0 3744216000 0 8809920 0 3780 0 0
0 0 0 0 0 0 0 0 124807200 0 197064 0 34 0
0 0 0 0 0 0 0 0 0 3670800 0 3496 0 0
0 0 0 0 0 0 0 0 0 0 96600 0 42 0
0 0 0 0 0 0 0 0 0 0 0 2300 0 0

20

0 0 0 0 0 0 0 0 0 0 0 0 50 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
]
sqr_norms = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27]

21

	Introduction
	Contribution
	Related work

	Sketch of algorithm
	Doubling formulae
	The initial approximations

	Error analysis
	Backwards error of Gramian
	Controlling the backward error of the computed Gramian

	Rank properties of the approximate Gramian
	Design of algorithm and numerical experiments
	Numerical experiments

	Conclusions
	References
	Additional information on experiments
	Coefficient tables for the Legendre expansion of the Matrix exponential
	Coefficient tables for q = 3
	Coefficient tables for q = 5
	Coefficient tables for q = 7
	Coefficient tables for q = 9
	Coefficient tables for q = 13

