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Abstract. In this paper, we introduce the tamed stochastic gradient descent

method (TSGD) for optimization problems. Inspired by the tamed Euler

scheme, which is a commonly used method within the context of stochas-

tic differential equations, TSGD is an explicit scheme that exhibits stability

properties similar to those of implicit schemes. As its computational cost is

essentially equivalent to that of the well-known stochastic gradient descent

method (SGD), it constitutes a very competitive alternative to such methods.

We rigorously prove (optimal) sub-linear convergence of the scheme for

strongly convex objective functions on an abstract Hilbert space. The analysis

only requires very mild step size restrictions, which illustrates the good sta-

bility properties. The analysis is based on a priori estimates more frequently

encountered in a time integration context than in optimization, and this al-

ternative approach provides a different perspective also on the convergence of

SGD. Finally, we demonstrate the usability of the scheme on a problem arising

in a context of supervised learning.

1. Introduction

We consider the gradient flow

w′ = −∇F (w), w(0) = w1,

on the interval t ∈ [0,∞) in order to approximate its steady state w∗ which satisfies

∇F (w∗) = 0. We are interested in this problem because for a suitable F its solution

solves the minimization problem

w∗ = argmin
w

F (w).

Standard optimization methods may thereby be formulated as time-stepping meth-

ods for an evolution equation, which provides an alternative viewpoint on their

behaviour and on how to analyze them.

We are mainly interested in the case where F = 1
N

∑N
i=1 fi is a sum of many

functions fi of the same type. This setting occurs in, e.g., supervised learning

applications, where each fi corresponds to either a single data point or to a small
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subset (batch) of the data. In order to cover also the infinite data case, we assume

more generally that

F (w) = Eξ

[
f(ξ, w)

]
,

where ξ is a random variable and Eξ denotes the corresponding expectation. Then a

realization of ξ corresponds to a specific batch. In supervised learning applications,

the amount of data is frequently very large, and computing the full gradient ∇F

is not feasible. Instead, one typically applies stochastic methods where instead of

∇F the gradient ∇f(ξ, ·) is used, see [6] for a general overview.

A popular method is stochastic gradient descent (SGD), given by

wn+1 = wn − αn∇f(ξn, w
n), w1 = w1,

where {ξn}n∈N denotes a sequence of jointly independent random variables and

{αn}n∈N is a sequence of step sizes (learning rates). In essence, we apply the

standard gradient descent method but in each step only utilize a randomly chosen

(small) part of ∇F . More advanced methods such as Adam [20] exist as well, but

most are still based on the underlying SGD idea.

Viewed as a time-stepping method, SGD is equivalent to an inexact version of

the explicit (forward) Euler method and thereby suffers from the same stability

issues. In particular, if the problem is at all stiff, then there is a severe limit on

the step sizes αn, n ∈ N, where the iterates quickly explode in size if it is violated.

It has been observed that neural networks do indeed tend to give rise to such stiff

gradient flows, see e.g. [23] for an early concrete example. On the other hand, for

optimal performance, we want to choose the step sizes as large as possible, and thus

as close to this limit as possible. Since the limit depends on properties of F that

are not always known, like its Lipschitz constant, this is difficult.

Ideally, one would like to instead use an implicit scheme which is unconditionally

stable. This would remove the step size restrictions altogether. In certain cases,

such a method can be implemented very efficiently and is then the best choice. See,

e.g. [4, 8, 11, 26, 28, 34, 35, 36] for analyses of this setting. In general, however, it

means that we have to solve an unfeasibly large system of nonlinear equations in

each step.

The situation is similar for certain stochastic differential equations (SDEs), where

it can be shown that the explicit (forward) Euler-Maruyama method does neither

converge in strong mean-square sense nor in the numerically weak sense to the

exact solution at a finite time point, compare [17] and also [19] for a generalized

result. At the same time the implicit (backward) Euler-Maruyama scheme might

be too expensive. In this context, the tamed Euler scheme provides a fully explicit

alternative, with better stability properties. This scheme was introduced for SDEs

in [18] and has been studied further in, e.g., [15, 16, 30, 31]. Very recently, the

taming idea has also been extended to a setting similar to ours involving stochastic

gradient Langevin dynamics [22], which generalizes the deterministic setting from

[7, 32].

We propose to use a method of this type also in the current context, which we

call the tamed stochastic gradient descent (TSGD). It is defined by

wn+1 = wn − αn∇f(ξn, w
n)

1 + αn∥∇f(ξn, wn)∥ , w1 = w1.
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We note that it is a fully explicit scheme. Further, as the step sizes or the gradients

tend to zero, the method tends to the SGD. In fact, it is straightforward to show

that TSGD is a second-order perturbation of SGD. However, due to the specific

rescaling of the gradient, its stability properties are much better and large step

sizes do not cause issues.

The main contribution of this paper is a rigorous error analysis of TSGD in a

strongly convex setting, which demonstrates that it converges as O( 1n ). This is the

optimal rate which can be expected in this stochastic setting. Notably, we require

very weak or no bounds on the initial step size, and its size only affects the error

constants in a mild manner. Another feature of our analysis is that we consider the

problem in a (possibly) infinite-dimensional Hilbert space, which means that the

error bounds are applicable not only to optimization of Rd-valued data, but to, e.g.

classification of functions. We also directly prove convergence of {wn}n∈N towards

w∗ rather than of {F (wn)}n∈N towards F (w∗). While these types of convergence

are equivalent in the current setting, our approach provides better error constants

for the first type of convergence than using this equivalence together with more

standard arguments.

We refer to [6] for a general overview of optimization methods for our problem

setting. This includes a general proof of convergence for first-order explicit methods

in which many similar methods fit. We note that verifying the required assumptions

for the method suggested here is non-trivial. Furthermore, applying such a general

result would not highlight the benefit of the scheme. We also note that our analysis

is based on a different idea which relies on a priori estimates. The same ideas

can be applied also to, e.g., SGD, which similarly shows convergence without a

strict step size restriction. The limitation instead shows up in the error constant,

which becomes infeasibly large. For the proposed method, the error constant is

instead of a moderate size. Our analysis thus provides a different viewpoint on the

convergence of these kinds of methods, which does not rely on prescribed step size

limitations.

There are other related methods which might be useful in the given context,

such as implicit-explicit schemes [3, 5, 25, 29, 33], where only part of the problem

is considered in an implicit way, and sum-splitting methods [29, 37, 38] where the

problem is decomposed into many small subproblems and each is considered in an

implicit way. Both of these approaches rely on there being such easily identifiable

splittings, which is typically not the case in the general setting. More closely

related to our proposed method are the stabilized Runge-Kutta schemes proposed

in [1, 39] for parabolic problems rather than optimization. See also e.g. [12, 40] and

[14, Section V] for an overview. Recently, they were adapted to solve a special class

of deterministic optimization problems in [10].

While our proofs of convergence require rather strong assumptions, such as strong

convexity, we hasten to add that the method performs well also in more general

settings, such as that of general neural networks. This is demonstrated by our nu-

merical experiments in Section 6. It is therefore likely that our assumptions can be

much weakened while still guaranteeing, e.g., local convergence to a local minimum.

Such considerations would, however, add a considerable amount of technical details

that would obscure the general idea, and we thus choose to limit ourselves to this

setting.
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The paper is organized as follows. In Section 2 we fix the notation and state the

basic assumptions on the optimization problem. Then we formally introduce the

method in Section 3. As stated above, our main proof relies on a priori estimates,

and we prove these in Section 4. These are then used in the main error analysis

in Section 5. In Section 6, we provide several numerical experiments that illus-

trate our claims, both in a setting satisfying our basic assumptions and in a more

general setting. Section 7 summarises our conclusions. Finally, we collect some

generally applicable results that are critical for our analysis, but whose proofs are

overly technical and do not contribute to an understanding of the main ideas in

Appendix A.

2. Preliminaries

In the following, we denote by N the natural numbers, not including 0. Let

(H, ⟨·, ·⟩, ∥ · ∥) be a real Hilbert space (e.g. H = Rd for d ∈ N). Its dual space

is denoted by (H∗, ⟨·, ·⟩H∗ , ∥ · ∥H∗). Since H is a Hilbert space, there exists an

isometric isomorphism ι : H∗ → H such that ι−1 : H → H∗ with ι−1 : v 7→ ⟨v, ·⟩.
Let (Ω,F ,P) be a complete probability space and let {ξn}n∈N be a family of

jointly independent random variables on Ω. For a random variable X : Ω → H, let

Eξ[X] denote the expectation with respect to the probability distribution of ξ. We

are mainly interested in the total expectation

En

[
∥X∥2

]
= Eξ1

[
Eξ2

[
· · ·Eξn

[
∥X∥2

]
· · ·

]]
.

Since the random variables {ξn}n∈N are jointly independent, this expectation co-

incides with the expectation with respect to the joint probability distribution of

ξ1, . . . , ξn. We also note here that if one of the following statements does not in-

volve an expectation but does contain a random variable, then it is assumed to hold

almost surely (a.s.) even if this is not explicitly stated.

For a measurable space (E, E), let ξ : Ω → E be a random variable and f : E ×
H → R be a function. We then consider the composition function f(ξ, ·) : Ω×H →
R which we assume fulfils

F (w) = Eξ

[
f(ξ, w)

]
,

and aim to find

w∗ = argmin
w

F (w).

The existence of such a minimum will be guaranteed by a strong convexity assump-

tion below. We note that this means that ∇F (w∗) = 0.

In the following theory, we only consider the composition function f(ξ, ·) : Ω ×
H → R in detail instead of f : E × H → R and therefore do not need to state

the measurable space (E, E) explicitly. For a fixed ω, the element ξ(ω) ∈ E can,

for example, represent the batch chosen to approximate F as explained in the

introduction.

Below, we collect all the assumptions that will be used throughout the paper.

Each lemma and theorem specifies which particular assumptions are in effect at

that point. The first assumption concerns the properties of the functions f(ξ, ·),
which will be used as stochastic approximations to F .

Assumption 1. Let f(ξ, ·) : Ω×H → R be given such that

• ⟨ι∇f(ξ, v), w⟩ = limh→0
f(ξ,v+hw)−f(ξ,v)

h a.s. for all v, w ∈ H, i.e. f(ξ, ·)
is Gâteaux differentiable a.s.;
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• there exists a random variable µξ : Ω → [0,∞) with Eξ[µξ] =: µ ∈ (0,∞)

such that

⟨ι∇f(ξ, v)− ι∇f(ξ, w), v − w⟩ ≥ µξ∥v − w∥2 a.s. for all v, w ∈ H;

• there exists a random variable Lξ : Ω → [0,∞) with
(
Eξ

[
L2
ξ

]) 1
2 =: L ∈

(0,∞) such that

∥ι∇f(ξ, v)− ι∇f(ξ, w)∥ ≤ Lξ∥v − w∥ a.s. for all v, w ∈ H;

• for w∗ ∈ H with ∇F (w∗) = 0, there exists a finite value σ ∈ [0,∞) such

that
(
Eξ

[
∥ι∇f(ξ, w∗)∥2

]) 1
2 = σ.

The above assumption is enough to prove convergence with a sub-optimal rate

and the optimal rate in some cases. To guarantee the optimal rate in all cases, we

additionlly make the following assumption on certain higher moments.

Assumption 2. Let f be given such that Assumption 1 is fulfilled. Further, assume

that for all v, w ∈ H

• ⟨ι∇f(ξ, v) − ι∇f(ξ, w), v − w⟩ ≥ µξ∥v − w∥2 with
(
Eξ

[
∥µ2

ξ

]) 1
2 =: µ2 ∈

(0,∞).

• ∥ι∇f(ξ, v)− ι∇f(ξ, w)∥ ≤ Lξ∥v − w∥ with
(
Eξ

[
L4
ξ

]) 1
4 =: L4 ∈ (0,∞);

• for w∗ ∈ H with ∇F (w∗) = 0, there exists a finite value σ4 ∈ [0,∞) such

that
(
Eξ

[
∥ι∇f(ξ, w∗)∥4

]) 1
4 =: σ4.

Finally, in the case that the gradient is also globally bounded, the convergence

result can be further improved. For technical reasons we also need to ensure that at

points away from the minimum, the stochastic gradients are not significantly smaller

than they are at the minimum of F . This is the content of the next assumption.

Assumption 3. Let f be given such that Assumption 1 is fulfilled, and such that

there exists B ∈ (0,∞) with ∥ι∇f(ξ, w)∥ ≤ B a.s. for all w ∈ H. Further, for

w∗ ∈ H such that ∇F (w∗) = 0 there exists D ∈ [0,∞) such that(
Eξ

[
χ∥ι∇f(ξ,w)∥>0

∥ι∇f(ξ, w∗)∥2
∥ι∇f(ξ, w)∥2

]) 1
2 ≤ D

is fulfilled for all w ∈ H.

As shown in the auxiliary Lemma A.3, Assumption 1 means that F is also

Gâteaux differentiable and ∇F = Eξ

[
∇f(ξ, ·)

]
. The following lemma summarises

a few further consequences of the above assumptions.

Lemma 2.1. Let Assumption 1 be fulfilled. Then F is strongly convex with con-

vexity constant µ and ∇F is Lipschitz continuous with Lipschitz constant LF ≤ L,

i.e. for all v, w ∈ H it holds that

∥∇F (v)−∇F (w)∥H∗ = ∥ι∇F (v)− ι∇F (w)∥ ≤ LF ∥v − w∥ ≤ L∥v − w∥ and

F (v) ≥ F (w) + ⟨ι∇F (w), v − w⟩ + µ

2
∥v − w∥2.

Further, the first inequality implies that

F (v) ≤ F (w) + ⟨ι∇F (w), v − w⟩ + L

2
∥v − w∥2.

Finally, there exists a unique w∗ ∈ H such that F (w∗) = minw∈H F (w).
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Proof. Using ∇F (w) = Eξ

[
∇f(ξ, w)

]
, we obtain

⟨ι∇F (v)− ι∇F (w), v − w⟩ ≥ µ∥v − w∥2 for all v, w ∈ H.

Thus, the function v 7→ ∇F (v) − µι−1v is monotone. Applying [42, Proposi-

tion 25.10], it follows that v 7→ F (v) − µ
2 ∥v∥2 is convex such that F is strongly

convex and the variational inequality stated in the lemma is fulfilled. The Lips-

chitz continuity of ι∇F similarly follows from the Lipschitz continuity of ι∇f(ξ, ·)
by the identification provided in Lemma A.3. The final inequality follows by ex-

panding F in a zeroth-order Taylor expansion around w and using the Lipschitz

continuity. See e.g. [6, Appendix B] for more details. Since F is strongly convex,

it is coercive. Combined with the Gâteaux differentiability, this guarantees the ex-

istence of a unique global minimum, see e.g. [42, Theorem 25.D, Proposition 25.20

and Corollary 25.15]. □

3. The stochastic tamed Euler scheme

Throughout the paper, we will assume that {ξn}n∈N is a given a family of jointly

independent random variables and we will abbreviate fn(w) = f(ξn, w) for n ∈ N.
The ξn typically correspond to what batches we choose in each iteration, i.e. on

which part of the data we evaluate the gradient. Let {αn}n∈N be a sequence of of

positive real numbers. We then consider the stochastic tamed Euler scheme

wn+1 = wn − αnι∇fn(w
n)

1 + αn∥ι∇fn(wn)∥ for n ∈ N, w1 = w1.(3.1)

Note that it is also possible to choose a random initial value w1, and our convergence

statements can be extended to this setting in a straightforward way. For simplicity,

we restrict ourselves to a fixed initial value w1 ∈ H in the following.

We note that the computational effort of the scheme is essentially the same as

that of SGD, since once ∇fn(w
n) has been found it is cheap to compute its norm.

We also note that TSGD can be interpreted as a second order perturbation of SGD,

since

αnι∇fn(w
n)

1 + αn∥ι∇fn(wn)∥ = αnι∇fn(w
n)− α2

n∥∇fn(w
n)∥ι∇fn(w

n)

1 + αn∥ι∇fn(wn)∥ .

This second order perturbation mainly offers advantages if αn∥ι∇fn(w
n)∥ is large.

In this case we make use of the fact that

1

2
min

{
1, αn∥ι∇fn(w

n)∥
}
≤ αn∥ι∇fn(w

n)∥
1 + αn∥ι∇fn(wn)∥ ≤ min

{
1, αn∥ι∇fn(w

n)∥
}
.

Thus, the growth of wn+1 − wn = −αnι∇fn(w
n)

1+αn∥ι∇fn(wn)∥ is always bounded.

4. A priori bounds

Our main results will show that En

[
∥wn+1 − w∗∥2

]
tends to zero as 1

n in the

strongly convex case. In this section, we prepare for the proofs of this by first

showing that the errors are bounded. We note that the main argument here only

requires convexity rather than strong convexity, and the w∗ in the following three

lemmas could therefore equally well be any w∗ ∈ H that satifies ∇F (w∗) = 0.
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Lemma 4.1. Let Assumption 1 be fulfilled and let {αn}n∈N be a sequence of positive

real numbers such that
∑∞

n=1 α
2
n < ∞. For Φ ∈ [0,∞) the a priori bound

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2exp

( ∞∑
i=1

(
2σ2 min

{
Φ−2, α2

i

}
+ 4α2

iL
2mi

))
+

∞∑
i=1

(
Φ2 min

{
Ei

[
∥ι∇fi(w

i)∥−2
]
, α2

i

}
+ 2(1−mi) + 2min

{
1, 2α2

iσ
2
})

× exp
( ∞∑

j=i+1

(
2σ2 min

{
Φ−2, α2

j

}
+ 4α2

jL
2mj

))
=: M2

is fulfilled, where min
{
Φ−2, x

}
= x for Φ = 0 and every x ∈ R and

mi =

{
1, if 2α2

iL
2Ei−1

[
∥wi − w∗∥2

]
≤ 1,

0, otherwise.

Furthermore, there exists n0 ∈ N such that mi = 1 for all i ≥ n0.

Remark 4.2. The advantage of this particular a priori bound is that the bound

does not grow very much when the initial step size is increased. The corresponding

proof for the SGD method looks very similar, but does not have the factors mn or

min{. . . , α2
n}, n ∈ N. This means that the first few terms in the products become

very large, even for moderately sized Lipschitz constants, reflecting the fact that

a too large step size can lead to instability. In our case, these large terms are

multiplied by 0 or cut off by the min-function. The constant Φ can be used to tune

the error bound further in case σ or En

[
∥ι∇fn(w

n)∥−2
]
, n ∈ N, is large.

Proof of Lemma 4.1. We test the scheme defined by (3.1) with wn − w∗, in order

to obtain that

⟨wn+1 − w∗ − (wn − w∗), wn − w∗⟩

+
αn⟨ι∇fn(w

n)− ι∇fn(w
∗), wn − w∗⟩

1 + αn∥ι∇fn(wn)∥ = −αn⟨ι∇fn(w
∗), wn − w∗⟩

1 + αn∥ι∇fn(wn)∥ .
(4.1)

Using the identity ⟨u − v, u⟩ = 1
2 (∥u∥2 − ∥v∥2 + ∥u − v∥2), u, v ∈ H, the first

summand on the left-hand side can be written as

− ⟨wn − w∗ − (wn+1 − w∗), wn − w∗⟩

= −1

2

(
∥wn − w∗∥2 − ∥wn+1 − w∗∥2 + ∥wn+1 − wn∥2

)
=

1

2

(
∥wn+1 − w∗∥2 − ∥wn − w∗∥2 − α2

n∥ι∇fn(w
n)∥2

(1 + αn∥ι∇fn(wn)∥)2
)
,

where we inserted the scheme in the last step. Thus, inserting the monotonicity

condition for fn into (4.1) and multiplying the inequality with the factor two, it

follows that

∥wn+1 − w∗∥2 − ∥wn − w∗∥2

≤ −2αn⟨ι∇fn(w
∗), wn − w∗⟩

1 + αn∥ι∇fn(wn)∥ +
α2
n∥ι∇fn(w

n)∥2
(1 + αn∥ι∇fn(wn)∥)2 =: I1 + I2.
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Since the tamed Euler scheme is the forward Euler scheme with a second order

perturbation, it follows that

αnι∇fn(w
∗)

1 + αn∥ι∇fn(wn)∥ =
αnι∇fn(w

∗)

1 + αnΦ
+

α2
n

(
Φ− ∥ι∇fn(w

n)∥
)
ι∇fn(w

∗)

(1 + αn∥ι∇fn(wn)∥)(1 + αnΦ)

for Φ ∈ [0,∞). Note that we have w∗ in the numerator of the left-hand-side but wn

in the denominator. We insert this equality into I1 and use the Cauchy–Schwarz

inequality and Young’s inequality for products in order to obtain

I1 = −αn⟨2ι∇fn(w
∗), wn − w∗⟩

1 + αn∥ι∇fn(wn)∥

≤ −2αn⟨ι∇fn(w
∗), wn − w∗⟩

1 + αnΦ
+

2α2
nΦ∥ι∇fn(w

∗)∥∥wn − w∗∥
(1 + αn∥ι∇fn(wn)∥)(1 + αnΦ)

+
2α2

n∥ι∇fn(w
n)∥∥ι∇fn(w

∗)∥∥wn − w∗∥
(1 + αn∥ι∇fn(wn)∥)(1 + αnΦ)

≤ −2αn⟨ι∇fn(w
∗), wn − w∗⟩

1 + αnΦ
+

α2
n

(
Φ2 + ∥ι∇fn(w

n)∥2
)

(1 + αn∥ι∇fn(wn)∥)2

+
2α2

n∥ι∇fn(w
∗)∥2∥wn − w∗∥2

(1 + αnΦ)2
=: I1,1 + I1,2 + I1,3.

For I1,1 = − 2αn⟨ι∇fn(w
∗),wn−w∗⟩

1+αnΦ
, we notice that Eξn [I1,1] = 0. Moreover, for

I1,2 =
α2

n(Φ
2+∥ι∇fn(w

n)∥2)
(1+αn∥ι∇fn(wn)∥)2 , we get

I1,2 ≤ Φ2 min
{
∥ι∇fn(w

n)∥−2, α2
n

}
+min

{
1, α2

n∥ι∇fn(w
n)∥2

}
≤ Φ2 min

{
∥ι∇fn(w

n)∥−2, α2
n

}
+min

{
1, 2α2

nL
2
ξn∥wn − w∗∥2

}
+min

{
1, 2α2

n∥ι∇fn(w
∗)∥2

}
and

I1,3 =
2α2

n∥ι∇fn(w
∗)∥2∥wn − w∗∥2

(1 + αnΦ)2
≤ 2∥ι∇fn(w

∗)∥2 min
{
Φ−2, α2

n

}
∥wn − w∗∥2.

A bound for I2 is given by

I2 =
α2
n∥ι∇fn(w

n)∥2
(1 + αn∥ι∇fn(wn)∥)2 ≤ min

{
1, α2

n∥ι∇fn(w
n)∥2

}
≤ min

{
1, 2α2

nL
2
ξn∥wn − w∗∥2

}
+min

{
1, 2α2

n∥ι∇fn(w
∗)∥2

}
.

Then it follows

∥wn+1 − w∗∥2 − ∥wn − w∗∥2 ≤ I1 + I2

≤ −2αn⟨ι∇fn(w
∗), wn − w∗⟩

1 + αnΦ
+ Φ2 min

{
∥ι∇fn(w

n)∥−2, α2
n

}
+ 2min

{
1, 2α2

nL
2
ξn∥wn − w∗∥2

}
+ 2min

{
1, 2α2

n∥ι∇fn(w
∗)∥2

}
+ 2∥ι∇fn(w

∗)∥2 min
{
Φ−2, α2

n

}
∥wn − w∗∥2.

(4.2)
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Taking the En-expectation, we then obtain

(4.3)

En

[
∥wn+1 − w∗∥2

]
≤

(
1 + 2σ2 min

{
Φ−2, α2

n

})
En−1

[
∥wn − w∗∥2

]
+Φ2 min

{
En

[
∥ι∇fn(w

n)∥−2
]
, α2

n

}
+ 2min

{
1, 2α2

nL
2En−1

[
∥wn − w∗∥2

]}
+ 2min

{
1, 2α2

nσ
2
}

=
(
1 + 2min

{
Φ−2, α2

n

}
σ2 + 4α2

nL
2mn

)
En−1

[
∥wn − w∗∥2

]
+Φ2 min

{
En

[
∥ι∇fn(w

n)∥−2
]
, α2

n

}
+ 2(1−mn) + 2min

{
1, 2α2

nσ
2
}
,

with mn defined as in the lemma statement. Reinserting the bound repeatedly thus

yields

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2

n∏
i=1

(
1 + 2σ2 min

{
Φ−2, α2

i

}
+ 4α2

iL
2mi

)
+

n∑
i=1

(
Φ2 min

{
Ei

[
∥ι∇fi(w

i)∥−2
]
, α2

i

}
+ 2(1−mi) + 2min

{
1, 2α2

iσ
2
})

×
n∏

j=i+1

(
1 + 2σ2 min

{
Φ−2, α2

j

}
+ 4α2

jL
2mj

)
.

Finally, we apply the inequality 1 + x ≤ exp(x), x ∈ R, and make the bound

independent of n by bounding the final sums by the corresponding infinite sums,

in order to obtain

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2exp

( ∞∑
i=1

(
2σ2 min

{
Φ−2, α2

i

}
+ 4α2

iL
2mi

))
+

∞∑
i=1

(
Φ2 min

{
Ei

[
∥ι∇fi(w

i)∥−2
]
, α2

i

}
+ 2(1−mi) + 2min

{
1, 2α2

iσ
2
})

× exp
( ∞∑

j=i+1

(
2σ2 min

{
Φ−2, α2

j

}
+ 4α2

jL
2mj

))
.

It remains to verify, that there exists n0 ∈ N such that mn = 1 for all n ≥ n0. This

can be done by estimating (4.3) and following a similar line of argumentation as

before. First, we can write

En

[
∥wn+1 − w∗∥2

]
≤

(
1 + 2α2

nσ
2 + 4α2

nL
2
)
En−1

[
∥wn − w∗∥2

]
+Φ2α2

n + 4α2
nσ

2.

Reinserting the inequality n− 1 times, it follows that

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2

n∏
i=1

(
1 + 2σ2α2

i + 4α2
iL

2
)
+

n∑
i=1

4α2
iσ

2
n∏

j=i+1

(
1 + 2σ2α2

j + 4α2
jL

2
)

≤ ∥w1 − w∗∥2exp
((

2σ2 + 4L2
) ∞∑
i=1

α2
i

)
+

∞∑
i=1

4α2
iσ

2exp
((

2σ2 + 4L2
) ∞∑
j=i+1

α2
j

)
.

Since
∑∞

n=1 α
2
n < ∞ there is thus a n0 ∈ N such that 2α2

nL
2En−1

[
∥wn−w∗∥2

]
≤ 1

for all n ≥ n0. □
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Lemma 4.3. Let Assumption 2 be fulfilled and let {αn}n∈N be a sequence of positive

real numbers such that
∑∞

n=1 α
2
n < ∞. Then the a priori bound

En

[
∥wn+1 − w∗∥4

]
≤ ∥w1 − w∗∥4exp

( ∞∑
i=1

ci1(αi)
)

+

∞∑
i=1

(
ci2(αi)M2 + ci3(αi)

)
exp

( ∞∑
j=i+1

cj1(αj)
)
=: M4

is fulfilled for ci1, c
i
2, c

i
3 : (0,∞) → (0,∞) such that there exist Ck

1 , C
k
2 , C

k
3 , C

k
4 ∈

(0,∞) with cik(α) ≤ Ci
1 min{Ci

2, α
4} + Ci

3 min{Ci
4, α

2} for all α ∈ (0,∞), k ∈
{1, 2, 3} and i ∈ N.

Proof. Within the proof of Lemma 4.1, we verified the inequality (4.2). Starting

from this point, we find

(4.4) ∥wn+1 − w∗∥2 − ∥wn − w∗∥2 ≤ An +Bn,

where

An = −2αn⟨ι∇fn(w
∗), wn − w∗⟩

1 + αnΦ
and

Bn = Φ2 min
{
∥ι∇fn(w

n)∥−2, α2
n

}
+ 2min

{
1, 2α2

nL
2
ξn∥wn − w∗∥2

}
+ 2min

{
1, 2α2

n∥ι∇fn(w
∗)∥2

}
+ 2∥ι∇fn(w

∗)∥2 min
{
Φ−2, α2

n

}
∥wn − w∗∥2

for Φ ∈ [0,∞). We note that the parameter Φ can be chosen such that En[Bn] is

as small as possible. From this it follows that

Eξn [An] = 0,

Eξn [Bn] ≤ Φ2 min
{
Eξn

[
∥ι∇fn(w

n)∥−2
]
, α2

n

}
+ 2min

{
1, 2α2

nL
2∥wn − w∗∥2

}
+ 2min

{
1, 2α2

nσ
2
}
+ 2σ2 min

{
Φ−2, α2

n

}
∥wn − w∗∥2,

Eξn [A
2
n] ≤ 4σ2 min{Φ−2, α2

n}∥wn − w∗∥2 and

Eξn [B
2
n] ≤ 4Φ4 min

{(
Eξn

[
∥ι∇fn(w

n)∥−2
])2

, α4
n

}
+ 16min

{
1, 4α4

nL
4
4∥wn − w∗∥4

}
+ 16min

{
1, 4α4

nσ
4
4

}
+ 16σ4

4 min
{
Φ−4, α4

n

}
∥wn − w∗∥4.

We note that for a, b ∈ R we have the identity (a− b)a = 1
2

(
|a|2 − |b|2 + |a− b|2

)
,

and thus |a|2 − |b|2 ≤ 2(a− b)a. By multiplying the inequality from (4.4) with the

factor 2∥wn+1 − w∗∥2, we therefore obtain

∥wn+1 − w∗∥4 − ∥wn − w∗∥4 ≤ 2
(
An +Bn

)
∥wn+1 − w∗∥2

≤ 2
(
An +Bn

)(
∥wn − w∗∥2 +An +Bn

)
≤ 2(An +Bn)∥wn − w∗∥2 + 4A2

n + 4B2
n
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and in Eξn -expectation

Eξn

[
∥wn+1 − w∗∥4

]
− ∥wn − w∗∥4

≤ 4
(
2L2 min

{
1
2L

−2∥wn − w∗∥−2, α2
n

}
+ σ2 min

{
Φ−2, α2

n

}
+ 64L4

4 min
{

1
4L

−4
4 ∥wn − w∗∥−4, α4

n

}
+ 16σ4

4 min
{
Φ−4, α4

n

})
∥wn − w∗∥4

+ 2
(
Φ2 min

{
Eξn

[
∥ι∇fn(w

n)∥−2
]
, α2

n

}
+ 4σ2 min

{
1
2σ

−2, α2
n

}
+ 8σ2 min{Φ−2, α2

n}
)
∥wn − w∗∥2

+ 16Φ4 min
{(

Eξn

[
∥ι∇fn(w

n)∥−2
])2

, α4
n

}
+ 256σ4

4 min
{

1
4σ

−4
4 , α4

n

}
=: cn1 (αn)∥wn − w∗∥4 + cn2 (αn)∥wn − w∗∥2 + cn3 (αn).

Adding ∥wn − w∗∥4 to both sides of the inequality, taking the En−1-expectation

and reinserting the bound, we obtain

En

[
∥wn+1 − w∗∥4

]
≤

(
1 + cn1 (αn)

)
En−1

[
∥wn − w∗∥4

]
+ cn2 (αn)M2 + cn3 (αn)

≤ ∥w1 − w∗∥4
n∏

i=1

(
1 + ci1(αi)

)
+

n∑
i=1

(
ci2(αi)M2 + ci3(αi)

) n∏
j=i+1

(
1 + cj1(αj)

)
≤ ∥w1 − w∗∥4exp

( ∞∑
i=1

ci1(αi)
)
+

∞∑
i=1

(
ci2(αi)M2 + ci3(αi)

)
exp

( ∞∑
j=i+1

cj1(αj)
)
.

Finally, this is finite due to the assumption
∑∞

n=1 α
2
n < ∞. □

It is much easier to show the following pathwise a priori bound, which provides

the intuition for why the scheme is good; in n steps, we can only make the error

worse by n in the worst case. This is a marked improvement over the situation for

other explicit methods such as SGD, where the error may grow without bound. It

is in fact similar to what one would get from an implicit scheme such as the implicit

Euler, corresponding to the proximal point method in the context of optimization.

Lemma 4.4. Let f(ξ, ·) : Ω×H → R be Gâteaux differentiable a.s. and let {αn}n∈N
be a sequence of positive real numbers. Then the a priori bound

∥wn+1 − w∗∥ ≤ ∥w1 − w∗∥+
n∑

i=1

min{1, αn∥ι∇fi(w
i)∥} ≤ ∥w1 − w∗∥+ n

is fulfilled.

Proof. We recall the TSGD scheme from (3.1) and obtain that

∥wn+1 − w∗∥ ≤ ∥wn+1 − wn∥+ ∥wn − w∗∥

=
αn∥ι∇fn(w

n)∥
1 + αn∥ι∇fn(wn)∥ + ∥wn − w∗∥

≤ min{1, αn∥ι∇fn(w
n)∥}+ ∥wn − w∗∥.

Reinserting this inequality shows that ∥wn+1 − w∗∥ ≤ ∥w1 − w∗∥+ n holds. □
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5. Error analysis

Given z ∈ H and α > 0, we define Tαfn,z(w) : Ω×H → H by

Tαfn,z(w) = w − αι∇fn(w)

1 + α∥ι∇fn(z)∥
.

This implies that the next iterate wn+1 is given by Tαnfn,wn(wn).

Lemma 5.1. Let Assumption 1 be fulfilled and let z ∈ H, α ∈ (0,∞) and Ξ ∈
[0,∞) be given. It then follows that∥∥∥Tαfn,z(w)− w +

αι∇fn(w)

1 + αΞ

∥∥∥ =
α2

∣∣Ξ− ∥ι∇fn(z)∥
∣∣∥ι∇fn(w)∥

(1 + α∥ι∇fn(z)∥)(1 + αΞ)

for all w ∈ H.

Proof. Inserting the definition of Tαfn,z, it follows that∥∥∥Tαfn,z(w)− w +
αι∇fn(w)

1 + αΞ

∥∥∥ =
∥∥∥ αι∇fn(w)

1 + α∥ι∇fn(z)∥
− αι∇fn(w)

1 + αΞ

∥∥∥
=

∥∥∥ αι∇fn(w) + α2Ξι∇fn(w)

(1 + α∥ι∇fn(z)∥)(1 + αΞ)
− αι∇fn(w) + α2∥ι∇fn(z)∥ι∇fn(w)

(1 + α∥ι∇fn(z)∥)(1 + αΞ)

∥∥∥
=

α2
∣∣Ξ− ∥ι∇fn(z)∥

∣∣∥ι∇fn(w)∥
(1 + α∥ι∇fn(z)∥)(1 + αΞ)

,

for all w ∈ H, which proves the claim. □

Lemma 5.2. Let Assumption 1 be fulfilled and let {αn}n∈N be a sequence of positive

real numbers. For any Ξ ∈ [0,∞) it then follows that

Eξn

[
∥wn+1 − w∗∥2

]
≤

(
1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(wn)∥
])

∥wn − w∗∥2

+ 2Eξn

[α2
n∥ι∇fn(w

n)− ι∇fn(w
∗)∥2

(1 + αn∥ι∇fn(wn)∥)2
]

+ 2Eξn

[ α2
n∥ι∇fn(w

∗)∥2
(1 + αn∥ι∇fn(wn)∥)2

]
+ 2Eξn

[α2
n

∣∣Ξ− ∥ι∇fn(w
n)∥

∣∣∥ι∇fn(w
∗)∥

(1 + αn∥ι∇fn(wn)∥)(1 + αnΞ)

]
∥wn − w∗∥

for every n ∈ N.

Proof. From wn+1 = Tαnfn,wn(wn) we obtain that

∥wn+1 − w∗∥2 = ∥Tαnfn,wn(wn)− Tαnfn,wn(w∗) + Tαnfn,wn(w∗)− w∗∥2

= ∥Tαnfn,wn(wn)− Tαnfn,wn(w∗)∥2 + ∥Tαnfn,wn(w∗)− w∗∥2

+ 2⟨Tαnfn,wn(wn)− Tαnfn,wn(w∗), Tαnfn,wn(w∗)− w∗⟩
=: I1 + I2 + 2I3.

For I1, we can write

I1 = ∥Tαnfn,wn(wn)− Tαnfn,wn(w∗)∥2

=
∥∥wn − w∗ + (Tαnfn,wn − I)(wn)− (Tαnfn,wn − I)(w∗)

∥∥2
= ∥wn − w∗∥2 + 2

〈
wn − w∗, (Tαnfn,wn − I)(wn)− (Tαnfn,wn − I)(w∗)

〉
+ ∥(Tαnfn,wn − I)(wn)− (Tαnfn,wn − I)(w∗)∥2 =: I1,1 + 2I1,2 + I1,3.
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The term I1,2 can be estimated by applying the Cauchy–Schwarz inequality:

I1,2 =
〈
wn − w∗, (Tαnfn,wn − I)(wn)− (Tαnfn,wn − I)(w∗)

〉
= −

〈
wn − w∗,

αnι∇fn(w
n)

1 + αn∥ι∇fn(wn)∥ − αnι∇fn(w
∗)

1 + αn∥ι∇fn(wn)∥
〉

≤ − αnµξn

1 + αn∥ι∇fn(wn)∥∥w
n − w∗∥2.

For I1,3, we insert the definition of Tαnfn,wn and find

I1,3 = ∥(Tαnfn,wn − I)(wn)− (Tαnfn,wn − I)(w∗)∥2

=
α2
n∥ι∇fn(w

n)− ι∇fn(w
∗)∥2

(1 + α∥ι∇fn(wn)∥)2 .

Thus, for I1, we have

I1 ≤
(
1− 2αnµξn

1 + αn∥ι∇fn(wn)∥
)
∥wn − w∗∥2 + α2

n∥ι∇fn(w
n)− ι∇fn(w

∗)∥2
(1 + α∥ι∇fn(wn)∥)2 .

Further, I2 can be written as

I2 = ∥Tαnfn,wn(w∗)− w∗∥2 =
α2
n∥ι∇fn(w

∗)∥2
(1 + αn∥ι∇fn(wn)∥)2 .

Finally, I3 can be rewritten as

I3 = ⟨Tαnfn,wn(wn)− Tαnfn,wn(w∗), Tαnfn,wn(w∗)− w∗⟩
= ⟨(Tαnfn,wn − I)(wn)− (Tαnfn,wn − I)(w∗), (Tαnfn,wn − I)(w∗)⟩
+ ⟨wn − w∗, (Tαnfn,wn − I)(w∗)⟩ =: I3,1 + I3,2.

Then for I3,1, we insert the definition of Tαnfn,wn and obtain

I3,1 = ⟨(Tαnfn,wn − I)(wn)− (Tαnfn,wn − I)(w∗), (Tαnfn,wn − I)(w∗)⟩

≤ αn∥ι∇fn(w
n)− ι∇fn(w

∗)∥
1 + αn∥ι∇fn(wn)∥ · αn∥ι∇fn(w

∗)∥
1 + αn∥ι∇fn(wn)∥

≤ 1

2

α2
n∥ι∇fn(w

n)− ι∇fn(w
∗)∥2

(1 + αn∥ι∇fn(wn)∥)2 +
1

2

α2
n∥ι∇fn(w

∗)∥2
(1 + αn∥ι∇fn(wn)∥)2 ,

where we applied the Cauchy–Schwarz inequality and Young’s inequality. To esti-

mate I3,2, we add and subtract an additional summand, so that

I3,2 = ⟨wn − w∗, (Tαnfn,wn − I)(w∗)⟩

=
〈
wn − w∗, (Tαnfn,wn − I)(w∗) +

αnι∇fn(w
∗)

1 + αnΞ

〉
−
〈
wn − w∗,

αnι∇fn(w
∗)

1 + αnΞ

〉
,

where Eξn

[〈
wn − w∗, αnι∇fn(w

∗)
1+αnΞ

〉]
= 0 is fulfilled. Moreover, applying Lemma 5.1

and the Cauchy–Schwarz inequality, we obtain〈
wn − w∗, (Tαnfn,wn − I)(w∗) +

αnι∇fn(w
∗)

1 + αnΞ

〉
≤ α2

n

∣∣Ξ− ∥ι∇fn(w
n)∥

∣∣∥ι∇fn(w
∗)∥

(1 + αn∥ι∇fn(wn)∥)(1 + αnΞ)
∥wn − w∗∥.
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Thus, the expectation of I3 = I3,1 + I3,2 can be bounded by

Eξn [I3] ≤
1

2
Eξn

[α2
n∥ι∇fn(w

n)− ι∇fn(w
∗)∥2(

1 + αn∥ι∇fn(wn)∥
)2 +

α2
n∥ι∇fn(w

∗)∥2
(1 + αn∥ι∇fn(wn)∥)2

]
+Eξn

[α2
n

∣∣Ξ− ∥ι∇fn(w
n)∥

∣∣∥ι∇fn(w
∗)∥

(1 + αn∥ι∇fn(wn)∥)(1 + αnΞ)

]
∥wn − w∗∥.

Inserting the bounds for I1, I2 and I3 into Eξn

[
∥wn+1−w∗∥2

]
= Eξn

[
I1+I2+2I3

]
finishes the proof. □

Theorem 5.3. Let Assumption 2 be fulfilled. For αn = ϑ
n+γ , n ∈ N, with γ ∈

[0,∞), ϑ ∈ (0, 1+γ
2µ ] and

K = 2ϑ2Lµ2M
3
4
4 +

(
2ϑ2L2 + 2ϑ2Lσ + 2ϑ2µ2σ

)
M2 + 2ϑ2σ2M

1
2
2 + 2ϑ2σ2,

it follows that

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2(1 + γ)2ϑµ(n+ 1 + γ)−2ϑµ

+ exp
( 2ϑµ

1 + γ

)
K


(n+ 1 + γ)−1 1

2ϑµ−1 , 2ϑµ ∈ (1,∞),

(n+ 1 + γ)−1(1 + ln (n+ γ)), 2ϑµ = 1,

(n+ 1 + γ)−2ϑµ (1+γ)2ϑµ−2(2ϑµ−2−γ)
2ϑµ−1 , 2ϑµ ∈ [0, 1),

for every n ∈ N.

Remark 5.4. By choosing ϑ ∈ ( 1
2µ ,∞) we obtain the optimal convergence rate. A

value of ϑ much larger than 1
2µ does not improve the overall rate further, but does

affect the exponent in the first term of the bound that involves the initial error.

We note that since 1+γ
2µ ≥ 1

2µ , it is possible to make this choice for any γ. We

could in fact instead have analyzed the simpler step size sequence with αn = ϑ
n ,

but chose to present the results in this form in order to match our other results

and comparable results for e.g. SGD [6, Theorem 4.7]. The results for the simpler

sequence are recovered by simply setting γ = 0.

Proof of Theorem 5.3. The main idea of the proof is to apply the bound from

Lemma 5.2 with Ξ = 0 and bound the denominators of the last three summands
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from below by one. We then get

Eξn

[
∥wn+1 − w∗∥2

]
≤

(
1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(wn)∥
])

∥wn − w∗∥2 + 2α2
nL

2∥wn − w∗∥2 + 2α2
nσ

2

+ 2α2
n

(
Eξn

[
∥ι∇fn(w

n)∥2
]) 1

2σ∥wn − w∗∥

≤
(
1−Eξn

[ 2αnµξn

1 + αnLξn∥wn − wn∥+ αn∥ι∇fn(w∗)∥
])

∥wn − w∗∥2

+
(
2α2

nL
2 + 2α2

nLσ
)
∥wn − w∗∥2 + 2α2

nσ
2∥wn − w∗∥+ 2α2

nσ
2

≤
(
1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(w∗)∥ +
2α2

nLξnµξn

(1 + αn∥ι∇fn(w∗)∥)2 ∥w
n − w∗∥

])
∥wn − w∗∥2

+ α2
n

((
2L2 + 2Lσ

)
∥wn − w∗∥2 + 2σ2∥wn − w∗∥+ 2σ2

)
≤

(
1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(w∗)∥
])

∥wn − w∗∥2

+ α2
n

(
2Lµ2∥wn − w∗∥3 +

(
2L2 + 2Lσ

)
∥wn − w∗∥2 + 2σ2∥wn − w∗∥+ 2σ2

)
,

where we added and subtracted ι∇fn(w
∗) and applied Minkowski’s inequality in

the second step and Lemma A.2 in the third. For the first summand of the previous

inequality, we apply Lemma A.2 once more and find(
1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(w∗)∥
])

∥wn − w∗∥2

=
(
1−Eξn

[ 2ϑµξn

n+ γ + ϑ∥ι∇fn(w∗)∥
])

∥wn − w∗∥2

≤
(
1−Eξn

[2ϑµξn

n+ γ

]
+Eξn

[ 2ϑµξn

(n+ γ)2
ϑ∥ι∇fn(w

∗)∥
])

∥wn − w∗∥2

≤
(
1− 2ϑµ

n+ γ

)
∥wn − w∗∥2 + 2α2

nµ2σ∥wn − w∗∥2.

Taking the En−1-expectation and applying the a priori bounds from Lemma 4.1

and Lemma 4.3, we find that

En

[
∥wn+1 − w∗∥2

]
≤

(
1− 2ϑµ

n+ γ

)
En−1

[
∥wn − w∗∥2

]
+ 2α2

nLµ2En−1

[
∥wn − w∗∥3

]
+
(
2α2

nL
2 + 2α2

nLσ + 2α2
nµ2σ

)
En−1

[
∥wn − w∗∥2

]
+ 2α2

nσ
2En−1

[
∥wn − w∗∥

]
+ 2α2

nσ
2

≤
(
1− 2ϑµ

n+ γ

)
En−1

[
∥wn − w∗∥2

]
+ 2α2

nLµ2M
3
4
4

+
(
2α2

nL
2 + 2α2

nLσ + 2α2
nµ2σ

)
M2 + 2α2

nσ
2M

1
2
2 + 2α2

nσ
2

=
(
1− 2ϑµ

n+ γ

)
En−1

[
∥wn − w∗∥2

]
+

K

(n+ γ)2
.

Reinserting the inequality n− 1 times yields

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2

n∏
i=1

(
1− 2ϑµ

γ + i

)
+K

n∑
i=1

1

(γ + i)2

n∏
j=i+1

(
1− 2ϑµ

γ + j

)
.
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Due to the assumption ϑ ∈ (0, 1+γ
2µ ], we can apply Lemma A.1 with x = 2ϑµ and

y = γ and obtain the claimed error bound. □

In comparison to convergence results regarding SGD, e.g. [6, Theorem 4.7], the

higher-moment bounds in Assumption 2 are not necessary. These are in fact not

needed to prove convergence of TSGD, as the following theorem demonstrates. The

drawback is that the contraction parameter is given by 1− 2αnµξn

1+αn∥ι∇fn(wn)∥ , where

we cannot verify that ∥ι∇fn(w
n)∥ is bounded. Thus, it is not necessarily possible

to prove the optimal rate of convergence in all cases. We note that the step size

sequence involving γ is important here, as it allows us to choose a large ϑ for which

the parameter C defined in the theorem below becomes as large as possible, leading

to the best possible rate. A larger γ also increases the error term arising from the

initial error, but as argued in [6, p. 251] the influence of this term can be minimized

by precomputing a better w1 using e.g. TSGD with a constant step size. We note

that the condition C ≤ 1 + γ is mostly technical, will likely not be an issue in

practice, and can always be satisfied by choosing γ ≥ 1.

Theorem 5.5. Let Assumption 1 be fulfilled. For αn = ϑ
n+γ , n ∈ N, with γ ∈

[0,∞), ϑ ∈ (0,∞) such that

C = Eξ

[ 2γϑµξ

γ + ϑLξ∥w1 − w∗∥+ γϑLξ + ϑ∥ι∇f(ξ, w∗)∥
]
,

K = 2ϑ2
((
L2 + Lσ

)
M2 + σ2 + σ2M

1
2
2

)
and C ∈ (0, 1 + γ] it follows that

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2(1 + γ)C(n+ 1 + γ)−C

+ exp
( C

1 + γ

)
K


(n+ 1 + γ)−1 1

C−1 , C ∈ (1,∞),

(n+ 1 + γ)−1(1 + ln (n+ γ)), C = 1,

(n+ 1 + γ)−C (1+γ)C−2(C−2−γ)
C−1 , C ∈ [0, 1),

for every n ∈ N.

Proof. As in the proof of Theorem 5.3, the main idea of the proof is to apply the

bound from Lemma 5.2 with Ξ = 0, where we also bound the denominators of the

last three summands from below by one. We then get

Eξn

[
∥wn+1 − w∗∥2

]
≤

(
1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(wn)∥
])

∥wn − w∗∥2 + 2α2
nL

2∥wn − w∗∥2 + 2α2
nσ

2

+ 2α2
n

(
Eξn

[
∥ι∇fn(w

n)∥2
]) 1

2σ∥wn − w∗∥

≤
(
1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(wn)∥
])

∥wn − w∗∥2 + 2α2
n(L

2 + Lσ)∥wn − w∗∥2

+ 2α2
nσ

2 + 2α2
nσ

2∥wn − w∗∥

=:
(
1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(wn)∥
])

∥wn − w∗∥2 + α2
nI,
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where we added and subtracted ι∇fn(w
∗) and applied Minkowski’s inequality in

the second step. Using the a priori bound from Lemma 4.1, we find that

α2
nEn−1[I] = 2α2

n

((
L2 + Lσ

)
En−1

[
∥wn − w∗∥2

]
+ σ2 + σ2En−1

[
∥wn − w∗∥

])
≤ 2ϑ2

(n+ γ)2
((
L2 + Lσ

)
M2 + σ2 + σ2M

1
2
2

)
=

K

(n+ γ)2
.

Applying the pathwise a priori bound from Lemma 4.4, it follows that

αn∥ι∇fn(w
n)∥ ≤ αnLξn∥wn − w∗∥+ αn∥ι∇fn(w

∗)∥

≤ ϑ

n+ γ
Lξn∥w1 − w∗∥+ ϑn

γ + n
Lξn +

ϑ

n+ γ
∥ι∇fn(w

∗)∥

≤ ϑ

γ
Lξn∥w1 − w∗∥+ ϑLξn +

ϑ

γ
∥ι∇fn(w

∗)∥.

Thus, we find

1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(wn)∥
]

≤ 1− 1

n+ γ
·Eξ

[ 2γϑµξ

γ + ϑLξ∥w1 − w∗∥+ γϑLξ + ϑ∥ι∇f(ξ, w∗)∥
]
= 1− C

n+ γ
.

Altogether, this implies that

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2

n∏
i=1

(
1− C

γ + i

)
+K

n∑
i=1

1

(γ + i)2

n∏
j=i+1

(
1− C

γ + j

)
.

is fulfilled. As C ∈ (0, 1 + γ] is fulfilled by assumption, the claim of the theorem

can be verified by an application of Lemma A.1 with x = C and y = γ. □

In the penultimate theorem, we prove a convergence result under the additional

assumption that the gradient is bounded. Note that the error bound does not

increase uncontrollably with growing γ or ϑ. The terms γ and ϑB always appear

with a positive exponent in one factor and with the same, but negative, exponent in

another factor. This verifies that TSGD is very stable with respect to large initial

step sizes.

Theorem 5.6. Let Assumption 3 be fulfilled. For αn = ϑ
n+γ , n ∈ N with γ ∈ [0,∞),

1 + γ ≥ ϑ
(
2µ−B

)
and K =

(
4 + 6D2

)
B2 + 2

(
B2D + σB

)
M

1
2
2 it follows that

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2(1 + γ + ϑB)2ϑµ(n+ 1 + γ + ϑB)−2ϑµ

+ exp
( 2µϑ

1 + γ + ϑB

)
ϑ2K×

(n+ 1 + γ + ϑB)−1 1
2ϑµ−1 , 2ϑµ ∈ (1,∞),

(n+ 1 + γ + ϑB)−1
(
1 + ln (n+ γ + ϑB)

)
, 2ϑµ = 1,

(n+ 1 + γ + ϑB)−2ϑµ (1+γ+ϑB)2ϑµ−2(2ϑµ−2−γ+ϑB)
2ϑµ−1 , 2ϑµ ∈ [0, 1)

for every n ∈ N.
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Proof. Again, we apply the bound from Lemma 5.2 but this time with Ξ = B to

acquire

Eξn

[
∥wn+1 − w∗∥2

]
≤

(
1−Eξn

[ 2αnµξn

1 + αn∥ι∇fn(wn)∥
])

∥wn − w∗∥2

+ 4Eξn

[ α2
n∥ι∇fn(w

n)∥2
(1 + αn∥ι∇fn(wn)∥)2

]
+ 6Eξn

[ α2
n∥ι∇fn(w

∗)∥2
(1 + αn∥ι∇fn(wn)∥)2

]
+ 2Eξn

[α2
n

(
B + ∥ι∇fn(w

n)∥
)
∥ι∇fn(w

∗)∥
(1 + αn∥ι∇fn(wn)∥)(1 + αnB)

]
∥wn − w∗∥

≤
(
1−Eξn

[ 2αnµξn

1 + αnB

])
∥wn − w∗∥2 + 4α2

nB
2

(1 + αnB)2

+ 6Eξn

[ α2
n∥ι∇fn(w

∗)∥2
(1 + αn∥ι∇fn(wn)∥)2

]
+ 2

( αnB

1 + αnB
Eξn

[ αn∥ι∇fn(w
∗)∥

1 + αn∥ι∇fn(wn)∥
]
+

α2
nσB

(1 + αnB)2

)
∥wn − w∗∥,

where we used in the last step that the function x 7→ x
1+x is monotonically increasing

for x ∈ [0,∞). We also have

Eξn

[ α2
n∥ι∇fn(w

∗)∥2
(1 + αn∥ι∇fn(wn)∥)2

]
≤ Eξn

[ ∥ι∇fn(w
∗)∥2

∥ι∇fn(wn)∥2 · α2
n∥ι∇fn(w

n)∥2
(1 + αn∥ι∇fn(wn)∥)2

]
≤ α2

nB
2D2

(1 + αnB)2
,

and analogously Eξn

[ αn∥ι∇fn(w
∗)∥

1+αn∥ι∇fn(wn)∥
]
≤ αnBD

1+αnB
. It then follows that

Eξn

[
∥wn+1 − w∗∥2

]
≤

(
1− 2αnµ

1 + αnB

)
∥wn − w∗∥2 + α2

nB
2
(
4 + 6D2

)
(1 + αnB)2

+
2α2

nB
2D + 2α2

nσB

(1 + αnB)2
∥wn − w∗∥,

and taking the En−1-expectation, we find that

En

[
∥wn+1 − w∗∥2

]
≤

(
1− 2αnµ

1 + αnB

)
En−1

[
∥wn − w∗∥2

]
+

α2
nB

2
(
4 + 6D2

)
(1 + αnB)2

+
2α2

nB
2D + 2α2

nσB

(1 + αnB)2
(
En−1

[
∥wn − w∗∥2

]) 1
2

≤
(
1− 2αnµ

1 + αnB

)
En−1

[
∥wn − w∗∥2

]
+

α2
nB

2
(
4 + 6D2

)
(1 + αnB)2

+
2α2

n

(
B2D + σB

)
M

1
2
2

(1 + αnB)2

=
(
1− 2ϑµ

n+ γ + ϑB

)
En−1

[
∥wn − w∗∥2

]
+

ϑ2K

(n+ γ + ϑB)2
.

Reinserting the bound n− 1 times, it follows that

En

[
∥wn+1 − w∗∥2

]
≤ ∥w1 − w∗∥2

n∏
i=1

(
1− 2ϑµ

i+ γ + ϑB

)
+ ϑ2K

n∑
i=1

1

(i+ γ + ϑB)2

n∏
j=i+1

(
1− 2ϑµ

j + γ + ϑB

)
.
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Due to the restriction n + γ ≥ ϑ
(
2µ − B

)
, we can now apply Lemma A.1 with

x = 2ϑµ and y = γ + ϑB in order to finish the proof of the theorem. □

We note that convergence results in this area are often stated in the form F (wn)−
F (w∗) ≤ C

n . The above theorems are a slightly stronger version, in that they prove

convergence of the iterates themselves. However, in our setting these types of

convergence are actually equivalent, as the following theorem shows. We note that

it is possible to use an approach similar to the one above to directly prove the

convergence of {F (wn)}n∈N. The error constants thereby acquired are similar to

those acquired from a combination of one of the theorems above and Theorem 5.7

below. However, the reverse approach of proving convergence of {wn}n∈N by using

convergence of {F (wn)}n∈N results in an additional factor 2
µ which is typically very

large.

Theorem 5.7. Let Assumption 1 be fulfilled. Then
{
En

[
∥wn+1 − w∗∥2

]}
n∈N be-

haves asymptotically the same as
{
En

[
F (wn+1)

]
− F (w∗)

}
n∈N. More precisely,

En

[
F (wn+1)

]
− F (w∗) ≤ L

2
En

[
∥wn+1 − w∗∥2

]
, and

En

[
∥wn+1 − w∗∥2

]
≤ 2

µ
En

[
F (wn+1)

]
− F (w∗)

are fulfilled for every n ∈ N.

Proof. By applying Lemma 2.1, with v = wn+1 and w = w∗ we find that

F (wn+1) ≤ F (w∗) + ⟨ι∇F (w∗), wn+1 − w∗⟩ + L

2
∥wn+1 − w∗∥2.

But since ∇F (w∗) = 0, this directly implies

En

[
F (wn+1)

]
− F (w∗) ≤ L

2
En

[
∥wn+1 − w∗∥2

]
.

As F is strongly convex, it follows that

En

[
F (wn+1)

]
− F (w∗) ≥ En

[
⟨ι∇F (w∗), wn+1 − w∗⟩

]
+

µ

2
En

[
∥wn+1 − w∗∥2

]
=

µ

2
En

[
∥wn+1 − w∗∥2

]
,

since ∇F (w∗) = 0 which verifies the second inequality. □

6. Numerical experiments

In this section, we illustrate our theoretical results and the advantages of the

TSGD method by performing a few numerical experiments. We consider binary

classification, which means that we have N ∈ N given data samples xi ∈ Rd and

corresponding labels yi ∈ {0, 1}, i ∈ {1, . . . , N}. Each xi belongs to one of two

classes; to the first one if yi = 0 and to the second if yi = 1. The goal is to find

a prediction function hw : Rd → R such that hw(xi) ≈ yi for every i ∈ {1, . . . , N}.
The prediction function depends on the parameters w ∈ Rnw and is of a specific,

given type. Here, we consider two different types; the first is a support vector

machine (SVM) where hw(x) = ⟨ŵ, x⟩+b for w = (ŵ, b). This is an affine classifier,

which fits into our analysis. The second type is a general fully connected neural

network [13] where hw(x) depends nonlinearly on the parameters w. This type of

classifier does not fit directly into our analysis, but the TSGD method still performs

well.
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To measure the performance of the classifier we use the log loss function ℓ : R2 →
R given by ℓ(hw(x), y) = ln(1+ exp(−hw(x)y)). We also add a regularization term
λ
2 ∥w∥2 with λ ∈ (0,∞), which makes the problem strongly convex in the SVM case.

The overall problem is then to minimize the empirical risk F (w), where

F (w) =
1

N

N∑
i=1

ℓ(hw(xi), yi) +
λ

2
∥w∥2.

We choose two different data sets from the LIBSVM collection*, namely the

mushroom data set (originally from the UCI Machine Learning Repository [9]�)

and the rcv1.binary data set [21]�. The former has N = 8124 samples with d = 112

features while the latter contains N = 20242 samples with d = 47236 features each.

The regularization parameter λ corresponds to the convexity parameter µ from

Assumption 1. The other parameters L and σ appearing in our theory are more

difficult to state explicitly. As our theoretical results show that the choice of TSGD

step size does not depend on these parameters, this is not an issue for TSGD. In

comparison, for the step size sequence {αn}n∈N with αn = ϑ
n+γ , the optimal choice

for the parameter γ for SGD can depend on 1
L , see [6, Theorem 4.7]. This makes

it more difficult to find a suitable initial step size.

We have implemented both the SGD and TSGD methods in Python. Due to

the low complexity of the methods, this is fairly straightforward, and the main

issue is how to compute the gradients ∇fn(w
n), n ∈ N. In the SVM case, this is

also straightforward, and we can directly write down a closed-form expression that

depends on the data xi, i ∈ {1, . . . , N}. In the neural network case, we rely on the

scikit-learn library [27] and its backpropagation implementation. In both cases, we

deviate slightly from the presented analysis in that we do not choose the batches

completely randomly. Instead, we follow the conventional procedure of splitting

the data set into a number of batches and picking from these without replacement.

When there are none left, the data is reshuffled and new batches are created. One

such sequence is referred to as an epoch.

In the examples, we compare the TSGD method with the classical SGD method.

We plot the errors En

[
F (wn+1)

]
−F (w∗), which according to Theorem 5.7 behave

similarly to the errors ∥wn+1 − w∗∥2 for the number of steps n ∈ N. As we only

prove the convergence in expectation, we use 100 sample paths and plot the average

error for them. As the mushroom data set is comparably small, we can compute

a reference solution F (w∗) by using the nonlinear equation solver provided by the

package scipy.optimize [41] in the SVM setting. This enables us to show the

exact values F (wn) − F (w∗). In all the other examples, we compute a reference

solution F (w∗) by simply running the TSGD scheme for more steps and choosing

the lowest value obtained during all steps. The F (w∗) thereby acquired is not the

exact minimum but a very good approximation thereof. We choose TSGD to obtain

the reference solution F (w∗) as smaller values F (wn), n ∈ N, are obtained using

this method and therefore the obtained value F (w∗) is as small as possible.

In the following two sub-sections we further describe parameter choices and the

results of the different settings.

*Hosted at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
�Available at https://archive.ics.uci.edu/ml/datasets/mushroom.
�Available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#

rcv1.binary.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://archive.ics.uci.edu/ml/datasets/mushroom
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary
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Figure 1. TSGD (left) versus SGD (right), different step sizes,

SVM, mushrooms

6.1. Support vector machine. We used a batch size of 1% of the amount of

samples for both data sets. The regularization parameter was chosen as λ = 10−5.

We ran the example for 10 epochs but only stored every tenth value F (wn) in order

to save computational costs. For the step size αn = ϑ
n+γ we chose ϑ = 2·105 = 2λ−1

in order to ensure the optimal speed of convergence of TSGD from Theorems 5.3

and 5.6 and to fit the restriction for SGD from [6, Theorem 4.7]. Further, we

varied γ = 10m for m ∈ {0, . . . , 6} to investigate how larger initial step sizes

effect the errors. Note that in [6, Theorem 4.7] there is also a lower bound for γ.

This restriction cannot be stated easily as it depends for example on the Lipschitz

constant of ∇fn. The optimal rate can be observed for γ large enough in the SVM

examples.

In Figure 1, we observe very well how larger initial step sizes change the outcome.

For the TSGD method, we see how the error decreases while decreasing γ within

{103, 104, 105, 106} and thereby increasing the initial step size. When γ is chosen

within {1, 10, 102, 103} the error stops decreasing but remains within the same

ballpark. This behavior cannot be observed for SGD. While increasing the initial

step size has a positive effect for γ between {104, 105, 106}, it leads to large errors

within the first few steps for γ = 10m for m ∈ {0, 1, 2, 3} that can no longer be

compensated for at later points. We note that we observe a faster asymptotic

convergence for TSGD than suggested by our bounds (although we acknowledge

that choosing a representative reference curve is a non-trivial task, given the number

of different results in the plots). A possible explanation could be that the error in

Theorems 5.3, 5.5 and 5.6 consists of two parts where the exponent in the second

summand cannot be smaller than −1. In our case it could be the first error part

that is dominating the total error. Here, the error can decrease faster than ∼ n−1

for large ϑ. The second part of the error corresponds to the question how well

the operator Tαfn,z(w) = w − αι∇fn(w)
1+α∥ι∇fn(z)∥ preserves the optimum w∗. In the

deterministic case, i.e. fn = F , it follows that TαF,z(w
∗) = w∗. Thus, the stochastic

approximation of F by fn could be better than expected in our examples.

In Figure 2, we observe similar results for the second data set.

6.2. Neural network. We used a fully connected neural network with one hidden

layer containing 100 neurons. The activation function was f(x) = max{0, x} on the

hidden layers and f(x) = 1/(1 + exp(−x)) on the output layer. The regularization

parameter was again λ = 10−5. We allowed a maximum of 10 epochs, and used a

batch size which was 1% of the amount of samples. We stored every tenth value

F (wn) in order to save computational costs. For the steps size sequence {αn}n∈N
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Figure 2. TSGD (left) versus SGD (right), different step sizes,

SVM, rcv1.binary
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Figure 3. TSGD (left) versus SGD (right), different step sizes,

neural network, mushrooms

with αn = ϑ
n+γ , n ∈ N, we chose ϑ = 105 = λ−1 and we varied γ = 10m for

m ∈ {1, . . . , 7}.
The positive effects of TSGD are showing even more clearly in this example. In

Figure 3, we observe that for growing initial step sizes TSGD improves, while SGD

becomes worse. For the second example in Figure 4 we still observe that TSGD is

much more stable than SGD even though the best result is achieved with γ = 104

and it becomes worse after. Compared to SGD, the speed of convergence is faster.

Altogether, we note that if we choose the initial step size optimally, we do

achieve the optimal rate also for SGD. This is, however, difficult to do in a real

large-scale application, and the method is very sensitive to this choice. In contrast,

TSGD performs similarly well for many different parameter choices, and is thus

not sensitive at all. Further, in these examples, the TSGD decay is usually also

faster than the best SGD decay. Using a different step size sequence for SGD which

decreases faster initially and slower later might change this result, but it is unclear

how to choose this optimally. Providing such an automatically tuned step size

sequence is also, in fact, essentially what TSGD does.
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Figure 4. TSGD (left) versus SGD (right), different step sizes,

neural network, rcv1.binary

7. Conclusions

We have introduced the TSGD method as an alternative to the well-known SGD

method. While being comparably inexpensive, TSGD still offers better stability

properties in comparison to this standard method. We have provided a general

convergence analysis in an infinite dimensional framework for TSGD. While the

infinite dimensional setting ensures that the error constants are independent of the

underlying dimension of the problem, our analysis also shows that they are only

mildly affected by large step sizes. This is in contrast to SGD, where large step

sizes can lead to extremely large error constants. In practice, this means that larger

step sizes can be used for TSGD which may lead to fast convergence results. We

have also observed that TSGD is much less sensitive to the choice of parameters, in

that similar convergence behaviour is often achieved for very different initial step

sizes.

The advantages of TSGD were demonstrated in a numerical experiment involving

a classification problem. We applied both an affine classifier (SVM) and a nonlinear

classifier (neural network). The affine setting fits into our theory and illustrated

the theoretical results, while the good performance in the nonlinear framework

suggested that there is a wider range of applications of the TSGD scheme than

those covered by our assumptions.

Appendix A. Auxiliary results

This section contains three results that are required for our main theory, but

which are more generally applicable. The first lemma provides the main algebraic

inequalities which we base our convergence analysis on:

Lemma A.1. Let x, y ∈ (0,∞) and n,m ∈ N be given such that x
1+y ≤ 1. Then

the following inequalities are satisfied:

(i)
∏n

i=m

(
1− x

i+y

)
≤

(
n+1+y
m+y

)−x
,

(ii)
∑n

i=1
1

(i+y)2

∏n
j=i+1

(
1− x

j+y

)
≤ exp

(
x

1+y

)
(n+ 1 + y)−1 1

x−1 , x ∈ (1,∞),

(n+ 1 + y)−1
(
1 + ln (n+ y)

)
, x = 1,

(n+ 1 + y)−x (1+y)x−2(x−2−y)
x−1 , x ∈ [0, 1).
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Proof. In this proof, we apply the following basic inequalities involving (generalized)

harmonic numbers
n∑

i=m

(i+ y)−1 ≥ ln (n+ 1 + y)− ln (m+ y), m ∈ {1, . . . , n},

n∑
i=1

(i+ y)p ≤


(n+1+y)p+1

p+1 , p ∈ [0,∞),
(n+y)p+1

p+1 , p ∈ (−1, 0),

1 + ln (n+ y), p = −1,
(1+y)p(p−y)

p+1 , p ∈ (−∞,−1),

for y ∈ (0,∞). These inequalities follow by treating the sums as a lower or upper

Riemann sums approximating the integral
∫
(u+ y)p du over the intervals [0, n],

[1, n] or [0, n+ 1].

Using the inequality 1 + u ≤ eu for u ∈ [−1,∞), it follows that 0 ≤ 1 − x
i+y ≤

exp(− x
i+y ) is fulfilled for every i ∈ N since x

1+y ≤ 1. It then follows that

n∏
i=m

(
1− x

i+ y

)
≤ exp

(
− x

n∑
i=m

(i+ y)−1
)

≤ exp
(
− x

(
ln (n+ 1 + y)− ln(m+ y)

))
= exp

(
− x ln

(n+ 1 + y

m+ y

))
=

(n+ 1 + y

m+ y

)−x

from which the first claim follows directly. For the second claim, we use the fact

that i+1+y
i+y = 1 + 1

i+y ≤ 1 + 1
1+y ≤ exp( 1

1+y ) for all i ∈ N and find that

n∑
i=1

1

(i+ y)2

n∏
j=i+1

(
1− x

j + y

)
≤

n∑
i=1

1

(i+ y)2

(n+ 1 + y

i+ 1 + y

)−x

≤ (n+ 1 + y)−x
n∑

i=1

( i+ 1 + y

i+ y

)x

(i+ y)x−2

≤ exp
( x

1 + y

)
(n+ 1 + y)−x

n∑
i=1

(i+ y)x−2

≤ exp
( x

1 + y

)
(n+ 1 + y)−1 1

x−1 , x ∈ (1,∞),

(n+ 1 + y)−1
(
1 + ln (n+ y)

)
, x = 1,

(n+ 1 + y)−x (1+y)x−2(x−2−y)
x−1 , x ∈ [0, 1),

where we applied the basic inequalities from the beginning of the proof. □

Lemma A.2. Given a, b ∈ (0,∞), −1
ax+b ≤ − 1

b + a
b2x for every x ∈ (0,∞).

Proof. We consider the function f : [0,∞) → R with f(x) = −1
ax+b . Then the first

and second derivative of f are given by f ′(x) = a
(ax+b)2 and f ′′(x) = −2a2

(ax+b)3 . Using

a first-order Taylor expansion of f then shows that

f(x) = −1

b
+

a

b2
x− a2

(aξ + b)3
x2 ≤ −1

b
+

a

b2
x,

where ξ ∈ (0, x). □

The final lemma shows that ∇F does in fact exist and equals Eξ

[
∇f(ξ, ·)

]
. The

proof is essentially the same as in [28, Lemma 6] for the finite-dimensional case but
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we include it for completeness. Similar results can be proved also in more general

setting, see e.g. [24].

Lemma A.3. Let Assumption 1 be fulfilled. Then F = Eξ[f(ξ, ·)] is Gâteaux

differentiable and its derivative is given by

⟨ι∇F (v), w⟩ = Eξ[⟨ι∇f(ξ, v), w⟩] v, w ∈ H.

Proof. For v, w ∈ H, we see that by the definition of the Gâteaux derivative,

⟨ι∇F (v), w⟩ = lim
h→0

F (v + hw)− F (v)

h

= lim
h→0

Eξ[f(ξ, v + hw)]−E[f(ξ, v)]

h

= lim
h→0

Eξ

[f(ξ, v + hw)− f(ξ, v)

h

]
= lim

h→0
Eξ

[ 1
h

∫ h

0

⟨ι∇f(ξ, v + sw), w⟩ ds
]
.

In order to apply the dominated convergence theorem, we bound the integral as∣∣∣ 1
h

∫ h

0

⟨ι∇f(ξ, v + sw), w⟩ ds
∣∣∣

≤ 1

h

∫ h

0

∥ι∇f(ξ, v + sw)∥∥w∥ ds

≤ 1

h

∫ h

0

(
∥ι∇f(ξ, v + sw)− ι∇f(ξ, w∗)∥+ ∥ι∇f(ξ, w∗)∥

)
∥w∥ ds

≤ 1

h

∫ h

0

(
Lξ∥v + sw − w∗∥+ ∥ι∇f(ξ, w∗)∥

)
∥w∥ ds

≤ sup
s∈(0,h)

Lξ∥v + sw − w∗∥∥w∥+ ∥ι∇f(ξ, w∗)∥∥w∥

≤ Lξh∥w∥2 + Lξ∥v − w∗∥∥w∥+ ∥ι∇f(ξ, w∗)∥∥w∥,
where the last term is integrable on Ω. This implies that

⟨ι∇F (v), w⟩ = lim
h→0

Eξ

[ 1
h

∫ h

0

⟨ι∇f(ξ, v + sw), w⟩ ds
]

= Eξ

[
lim
h→0

1

h

∫ h

0

⟨ι∇f(ξ, v + sw), w⟩ ds
]
= Eξ[⟨ι∇f(ξ, v), w⟩].

□
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learning in Python, Journal of Machine Learning Research, 12 (2011), pp. 2825–2830.

[28] E. Ryu and S. Boyd, Stochastic proximal iteration: A non-asymptotic improvement upon

stochastic gradient descent, https://stanford.edu/~boyd/papers/pdf/spi.pdf, (2016).

[29] E. Ryu and W. Yin, Proximal-proximal-gradient method, J. Comput. Math., 37 (2019),

pp. 778–812.

[30] S. Sabanis, A note on tamed Euler approximations, Electron. Commun. Probab., 18 (2013),

pp. no. 47, 10.

[31] S. Sabanis, Euler approximations with varying coefficients: the case of superlinearly growing

diffusion coefficients, Ann. Appl. Probab., 26 (2016), pp. 2083–2105.

[32] S. Sabanis and Y. Zhang, Higher order Langevin Monte Carlo algorithm, Electron. J. Stat.,

13 (2019), pp. 3805–3850.

[33] A. Salim, P. Bianchi, and W. Hachem, Snake: a stochastic proximal gradient algorithm for

regularized problems over large graphs, IEEE Trans. Automat. Control, 64 (2019), pp. 1832–

1847.

[34] P. Toulis and E. Airoldi, Scalable estimation strategies based on stochastic approximations:

classical results and new insights, Stat. Comput., 25 (2015), pp. 781–795.

[35] P. Toulis and E. Airoldi, Asymptotic and finite-sample properties of estimators based on

stochastic gradients, Ann. Statist., 45 (2017), pp. 1694–1727.

[36] P. Toulis, J. Rennie, and E. Airoldi, Statistical analysis of stochastic gradient methods

for generalized linear models, Proceedings of the 31st International Conference on Machine

Learning, (2014).

[37] P. Toulis, D. Tran, and E. Airoldi, Towards stability and optimality in stochastic gradient

descent, in Proceedings of the 19th International Conference on Artificial Intelligence and

Statistics, A. Gretton and C. C. Robert, eds., vol. 51 of Proceedings of Machine Learning

Research, Cadiz, Spain, 09–11 May 2016, PMLR, pp. 1290–1298.

[38] D. Tran, P. Toulis, and E. Airoldi, Stochastic gradient descent methods for estimation

with large data sets, ArXiv Preprint, arXiv:1509.06459, (2015).

[39] P. J. van Der Houwen and B. Sommeijer, On the internal stability of explicit, m-stage

Runge-Kutta methods for large m-values, ZAMM, 60 (1980), pp. 479–485.

[40] J. Verwer, Explicit Runge-Kutta methods for parabolic partial differential equations, Appl.

Numer. Math., 22 (1996), pp. 359–379. Special issue celebrating the centenary of Runge-Kutta

methods.

[41] P. Virtanen, R. Gommers, T. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. van der Walt, M. Brett,

J. Wilson, K. Millman, N. Mayorov, A. Nelson, E. Jones, R. Kern, E. Larson,
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