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Abstract. We consider a stochastic version of the proximal point algorithm
for convex optimization problems posed on a Hilbert space. A typical appli-

cation of this is supervised learning. While the method is not new, it has

not been extensively analyzed in this form. Indeed, most related results are
confined to the finite-dimensional setting, where error bounds could depend

on the dimension of the space. On the other hand, the few existing results

in the infinite-dimensional setting only prove very weak types of convergence,
owing to weak assumptions on the problem. In particular, there are no re-

sults that show strong convergence with a rate. In this article, we bridge

these two worlds by assuming more regularity of the optimization problem,
which allows us to prove convergence with an (optimal) sub-linear rate also

in an infinite-dimensional setting. In particular, we assume that the objective

function is the expected value of a family of convex differentiable functions.
While we require that the full objective function is strongly convex, we do not

assume that its constituent parts are so. Further, we require that the gradi-
ent satisfies a weak local Lipschitz continuity property, where the Lipschitz

constant may grow polynomially given certain guarantees on the variance and

higher moments near the minimum. We illustrate these results by discretizing
a concrete infinite-dimensional classification problem with varying degrees of

accuracy.

1. Introduction

We consider convex optimization problems of the form

(1.1) w∗ = argmin
w∈H

F (w),

where H is a real Hilbert space and

F (w) = Eξ[f(w, ξ)].

The main applications we have in mind are supervised learning tasks. In such a
problem, a set of data samples {xj}nj=1 with corresponding labels {yj}nj=1 is given,
as well as a classifier h depending on the parameters w. The goal is to find w such
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that h(w, xj) ≈ yj for all j ∈ {1, . . . , n}. This is done by minimizing

(1.2) F (w) =
1

n

n∑

j=1

ℓ(h(w, xj), yj),

where ℓ is a given loss function. We refer to, e.g., Bottou, Curtis & Nocedal [9] for
an overview. In order to reduce the computational costs, it has been proved to be
useful to split F into a collection of functions f of the type

f(w, ξ) =
1

|Bξ|
∑

j∈Bξ

ℓ(h(w, xj), yj),

where Bξ is a random subset of {1, . . . , n}, referred to as a batch. In particular,
the case of |Bξ| = 1 is interesting for applications, as it corresponds to a separation
of the data into single samples.

A commonly used method for such problems is the stochastic gradient method
(SGD), given by the iteration

wk+1 = wk − αk∇f(wk, ξk),

where αk > 0 denotes a step size, {ξk}k∈N is a family of jointly independent random
variables and ∇ denotes the Gâteaux derivative with respect to the first variable.
The idea is that in each step we choose a random part f(·, ξ) of F and go in the
direction of the negative gradient of this function. SGD corresponds to a stochastic
version of the explicit (forward) Euler scheme applied to the gradient flow

ẇ = −∇F (w).

This differential equation is frequently stiff, which means that the method often
suffers from stability issues.

The restatement of the problem as a gradient flow suggests that we could avoid
such stability problems by instead considering a stochastic version of implicit (back-
ward) Euler, given by

wk+1 = wk − αk∇f(wk+1, ξk).

In the deterministic setting, this method has a long history under the name proximal
point method, because it is equivalent to

wk+1 = argmin
w∈H

{
αF (w) +

1

2
∥w − wk∥2

}
= proxαF (w

k),

where

proxαF (w
k) = (I + α∇F )−1wk.

The proximal point method has been studied extensively in the infinite dimensional
but deterministic case, beginning with the work of Rockafellar [28]. Several con-
vergence results and connections to other methods such as the Douglas–Rachford
splitting are collected in Eckstein & Bertsekas [13], see also Güler [17]. In the
strongly convex case, the main convergence analysis idea is to observe that the gra-
dient is strongly monotone. Then the resolvent (I+α∇F )−1 is a strict contraction,
and the Banach fixed point theorem shows that {wk}k∈N converges to w∗ in norm.

Following Ryu & Boyd [32], we will refer to the stochastic version as stochastic
proximal iteration (SPI). We note that the computational cost of one SPI step is in
general much higher than for SGD, and indeed often infeasible. However, in many
special cases a clever reformulation can result in very similar costs. If so, then SPI
should be preferred over SGD, as it will converge more reliably. We provide such
an example in Section 5.
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The main goal of this paper is to prove sub-linear convergence of the type

E
[
∥wk − w∗∥2

]
≤ C

k

in an infinite-dimensional setting, i.e. where {wk}k∈N and w∗ are elements in a
Hilbert space H. As shown in e.g. [1, 26], this is optimal in the sense that we
cannot expect a better asymptotic rate even in the finite-dimensional case.

Most previous convergence results in this setting only provide guarantees for
convergence, without an explicit error bound. The convergence is usually also in
a rather weak norm. This is mainly due to weak assumptions on the involved
functions and operators. Overall, little work has been done to consider SPI in
an infinite dimensional space. A few exceptions are given by Bianchi [7], where
maximal monotone operators ∇F : H → 2H are considered and weak ergodic con-
vergence and norm convergence is proved. In Rosasco et al. [30], the authors work
with an infinite dimensional setting and an implicit-explicit splitting where ∇F
is decomposed in a regular and an irregular part. The regular part is considered
explicitly but with a stochastic approximation while the irregular part is used in a
deterministic proximal step. They prove both ∇F (wk) → ∇F (w∗) and wk → w∗

in H as k → ∞. Without further assumptions, neither of these approaches yield
convergence rates.

In the finite-dimensional case, stronger assumptions are typically made, with
better convergence guarantees as a result. Nevertheless, for the SPI scheme in
particular, we are only aware of the unpublished manuscript [32], which suggests
1/k convergence in Rd. Based on [32], the implicit method has also been considered
in a few other works: In Patrascu & Necoara [24], a SPI method with additional
constraints on the domain was studied. A slightly more general setting that includes
the SPI has been considered in Davis & Drusvyatskiy [12]. Toulis & Airoldi and
Toulis et al. studied such an implicit scheme in [35, 36, 37]. Finally, very recently
and during the preparation of this work, [20] was published, wherein both SGD and
proximal methods for composite problems are analyzed in a common framework
based on bounded gradients. This is a generalization of the basic setting in a
different direction than our work.

Whenever using an implicit scheme, it is essential to solve the appearing im-
plicit equation effectively. This can be impeded by large batches for the stochastic
approximation of F . On the other hand, a larger batch improves the accuracy of
the approximation of the function. In Toulis, Tran & Airoldi [39, 40] and Ryu &
Yin [33], a compromise was found by solving several implicit problems on small
batches and taking the average of these results. This corresponds to a sum split-
ting. Furthermore, implicit-explicit splittings can be found in Patrascu & Irofti
[23], Ryu & Yin [33], Salim et al. [34], Bianchi & Hachem [8] and Bertsekas [6]. A
few more related schemes have been considered in Asi & Duchi [2, 3] and Toulis,
Horel & Airoldi [38]. More information about the complexity of solving these kinds
of implicit equations and the corresponding implementation can be found in Fagan
& Iyengar [16] and Tran, Toulis & Airoldi in [40].

Our aim is to bridge the gap between the “strong finite-dimensional” and “weak
infinite-dimensional” settings, by extending the approach of [32] to the infinite-
dimensional case. We also further extend the results by allowing for more general
Lipschitz conditions on ∇f(·, ξ), provided that sufficient guarantees can be made on
the integrability near the minimum w∗. In particular, we make the less restrictive
assumption that for every function f(·, ξ) and every ball of radius R > 0 around
the origin there is a Lipschitz constant Lξ(R) that grows polynomially with R. We
also weaken the standard assumption of strong convexity and only demand that
the functions are strongly convex for some realizations.
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We note that if F is only convex then there might be multiple local minima,
and proving convergence in norm is in general not possible. On the other hand, if
every f(·, ξ) is strongly convex then parts of the analysis can be simplified. The
assumptions made in this article are thus situated between these two extremes,
where it is still possible to prove convergence results similar to the strongly convex
case but under milder assumptions.

These strong convergence results can then be applied to, e.g., the setting where
there is an original infinite-dimensional optimization problem which is subsequently
discretized into a series of finite-dimensional problems. Given a reasonable dis-
cretization, each of those problems will then satisfy the same convergence guaran-
tees.

Our analysis closely follows the finite-dimensional approach [32]. However, sev-
eral arguments no longer work in the infinite-dimensional case (such as the unit
ball being compact, or a linear operator having a minimal eigenvalue) and we fix
those. Additionally, we simplify several of the remaining arguments, provide many
omitted, but critical, details and extend the results to more general operators.

A brief outline of the paper is as follows. The main assumptions that we make
are stated in Section 2, as well as the main theorem. Then we prove a number of
preliminary results in Section 3, before we can tackle the main proof in Section 4.
In Section 5 we describe a numerical experiment that illustrates our results, and
then we summarize our findings in Section 6.

2. Assumptions and main theorem

Let (Ω,F ,P) be a complete probability space and let {ξk}k∈N be a family of
jointly independent random variables on Ω. Each realization of ξk corresponds to a
different batch. Let (H, (·, ·), ∥·∥) be a real Hilbert space and (H∗, (·, ·)H∗ , ∥·∥H∗) its
dual. Since H is a Hilbert space, there exists an isometric isomorphism ι : H∗ → H
such that ι−1 : H → H∗ with ι−1 : u 7→ (u, ·). Furthermore, the dual pairing is
denoted by ⟨u′, u⟩ = u′(u) for u′ ∈ H∗ and u ∈ H. It satisfies

⟨ι−1u, v⟩ = (u, v) and ⟨u′, v⟩ = (ιu′, v), u, v ∈ H,u′ ∈ H∗.

We denote the space of linear bounded operators mapping H into H by L(H). For
a symmetric operator S, we say that it is positive if (Su, u) ≥ 0 for all u ∈ H. It
is called strictly positive if (Su, u) > 0 for all u ∈ H such that u ̸= 0.

For the function f(·, ξ) : H ×Ω → (−∞,∞], we use ∇, as in ∇f(u, ξ), to denote
differentiation with respect to the first variable. When we present an argument
that holds almost surely, we will frequently omit ξ from the notation and simply
write f(u) rather than f(u, ξ). Given a random variable X on Ω, we denote the
expectation with respect to P by E[X]. We use sub-indices, such as in Eξ[·],
to denote expectations with respect to the probability distribution of the random
variable ξ.

We consider the stochastic proximal iteration (SPI) scheme given by

wk+1 = wk − αkι∇f(wk+1, ξk) in H, w1 = w1 in H,(2.1)

for minimizing
F (w) = Eξ[f(w, ξ)],

where f and F fulfill the following assumption.
For the family of jointly independent random variables {ξk}k∈N, we are interested

in the total expectation

Ek

[
∥X∥2

]
:= Eξ1

[
Eξ2

[
· · ·Eξk

[
∥X∥2

]
· · ·
]]
.

Since the random variables {ξk}k∈N are jointly independent, and wk only depends
on ξj , j ≤ k − 1, this expectation coincides with the expectation with respect to
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the joint probability distribution of ξ1, . . . , ξk−1. In the rest of the paper, it often
occurs that a statement does not involve an expectation but contains a random
variable. Where it does not cause any confusion, such a statement is assumed to
hold almost surely even if this is not explicitly stated.

Assumption 1. For a random variable ξ on Ω, let the function f(·, ξ) : Ω×H →
(−∞,∞] be given such that ω 7→ f(v, ξ(ω)) is measurable for every v ∈ H and such
that f(·, ξ) is convex, lower semi-continuous and proper almost surely. Additionally,
f(·, ξ) fulfills the following conditions:

• The expectation Eξ

[
f(·, ξ)

]
=: F (·) is lower semi-continuous and proper.

• The function f(·, ξ) is Gâteaux differentiable almost surely on a non-empty
common domain D (∇f) ⊆ H, i.e. for all for all v, w ∈ D (∇f) the in-

equality ⟨ι∇f(v, ξ), w⟩ = limh→0
f(v+hw,ξ)−f(v,ξ)

h is fulfilled almost surely.

• There exists m ∈ N such that
(
Eξ

[
∥∇f(w∗, ξ)∥2mH∗

])2−m

=: σ < ∞.
• For every R > 0 there exists Lξ(R) : Ω → R such that

∥∇f(u, ξ)−∇f(v, ξ)∥H∗ ≤ Lξ(R)∥u− v∥
almost surely for all u, v ∈ D (∇f) with ∥u∥, ∥v∥ ≤ R. Furthermore, there
exists a polynomial P : R → R of degree 2m − 2 such that Lξ(R) ≤ P (R)
almost surely.

• There exist a random variable Mξ : Ω → L(H) such that the image is sym-
metric and a random variable µξ : Ω → [0,∞) such that Eξ[µξ] = µ > 0
and Eξ[µ

2
ξ ] = ν2 < ∞. Moreover,

⟨∇f(u, ξ)−∇f(v, ξ), u− v⟩ ≥ (Mξ(u− v), u− v) ≥ µξ∥u− v∥2

is fulfilled almost surely for all u, v ∈ D (∇f).

An immediate result of Assumption 1, is that the gradient ∇f(·, ξ) is maximal
monotone almost surely, see [27, Theorem A]. As a consequence, the resolvent
(proximal operator)

Tf,ξ = (I +∇f(·, ξ))−1

is well-defined almost surely, see Lemma 3.1 for more details. Further, each resol-
vent maps into D (∇f), and as a consequence every iterate wk ∈ D (∇f). Finally,
we may interchange expectation and differentation so that ∇F (w) = Eξ[∇f(ξ, w)].
Note that this means that the approximation ∇f(·, ξ) is an unbiased estimate of
the full gradient ∇F . In our case, this property can be shown via a straightforward
argument based on dominated convergence similar to [32, Lemma 6], but we note
that it also holds in more general settings [21, 29].

Remark 2.1. The idea behind the operators Mξ is that each f(·, ξ) is is allowed
to be only convex rather than strongly convex. However, they should be strongly
convex for some realizations, such that f(·, ξ) is strongly convex in expectation. By
assumption, F is lower semi-continuous, proper and strongly convex, so there is a
minimum w∗ of (1.1) (c.f. [4, Proposition 1.4]) which is unique due to the strong
convexity.

Remark 2.2. Note that the local Lipschitz constant of Assumption 1 is a gener-
alization compared to [32] and other existing literature. Instead of asking for one
Lipschitz constant Lξ that is valid on the entire domain, we only ask for a Lipschitz
constant Lξ(R) that depends on the norm of the input elements u, v ∈ D(∇f). This
means in particular that Lξ(R) may tend to infinity as R → ∞. In the coming
analysis we handle this by applying an a priori bound (Lemma 3.2) that shows that
the solution is bounded and thus R is bounded too.
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While the properness of F needs to be verified by application-specific means,
the lower semi-continuity can be guaranteed on a more general level in different
ways. If, e.g., it is additionally known that Eξ

[
infu∈H f(u, ξ)

]
> −∞ then one

can employ Fatou’s lemma ([22, Theorem 2.3.6]) as in [32, Lemma 5], or slightly
modify [5, Corollary 9.4].

We note that from a function analytic point of view, we are dealing with bounded
rather than unbounded operators ∇F . However, also operators that are tradition-
ally seen as unbounded fit into the framework, given that the space H is cho-
sen properly. For example, the functional F (w) = 1

2

∫
∥∇w∥2 corresponding to

∇F = −∆, the negative Laplacian, is unbounded on H = L2. But if we instead
choose H = H1

0 , then H∗ = H−1 and ∇F is bounded and Lipschitz continuous.
In this case, the splitting of F (w) into f(w, ξk) is less obvious than in our main
application, but e.g. (randomized) domain decomposition as in [25] is a natural
idea. In each step, an elliptic problem then has to be solved (to apply ι), but this
can often be done very efficiently.

Our main theorem states that we have sub-linear convergence of the iterates wk

to w∗ in expectation:

Theorem 2.1. Let Assumption 1 be fulfilled and let {ξk}k∈N be a family of jointly
independent random variables on Ω. Then the scheme (2.1) converges sub-linearly
if the step sizes fulfill αk = η

k with η > 1
µ . In particular, the error bound

Ek−1

[
∥wk − w∗∥2

]
≤ C

k

is fulfilled, where C depends on ∥w1 − w∗∥, µ, ν, σ, η and m.

When m = 1, there is a L such that Lξ(R) ≤ L almost surely for all R and we
have the explicit bound

C =

(
∥w1−w∗∥2+ 2µηη2

µη − 1

(
σ2+2Lσ

(
∥w1−w∗∥2+σ2

k−1∑

j=1

α2
j

) 1
2

))
exp
(ν2η2π2

4

)
.

For details on the error constant when m > 1, we refer the reader to the proof,
which is given in Section 4. We note that there is no upper bound on the step
size αk, as would be the case for an explicit method like SGD. There is still a
lower bound, but this is not as critical. Similarly to the finite-dimensional case
(see e.g. [32, Theorem 15]), the method still converges if the assumption η > 1

µ

is not fulfilled, albeit at a slower rate O(1/kγ) with γ < 1. This follows from
a straightforward extension of Lemma 3.10 and the above theorem, but we omit
these details for brevity. Moreover, we note that the exponential terms in the error
constant are an artifact of the proof. They are not observed in practice and could
likely be removed by the use of more refined algebraic inequalities.

The main idea of the proof is to acquire a contraction property of the form

Ek−1

[
∥wk − w∗∥2

]
≤ CkEk−2

[
∥wk−1 − w∗∥2

]
+ α2

kD,

where Ck < 1 and D are certain constants depending on the data. Inevitably,
Ck → 1 as k → ∞, but because of the chosen step size sequence this happens
slowly enough to still guarantee the optimal rate. To reach this point, we first show
two things: First, an a priori bound of the form Ek−1

[
∥wk −w∗∥2

]
≤ C, i.e. unlike

the SGD, the SPI is always stable regardless of how large the step size is. Secondly,
that the resolvents Tf,ξ are contractive with

Eξ

[
∥Tf,ξu− Tf,ξv∥2

]
≤ Ck∥u− v∥2.

Similarly to [32], we do the latter by approximating the functions f(·, ξ) by con-

vex quadratic functions f̃(·, ξ) for which the property is easier to verify, and then
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establishing a relation between the approximated and the true contraction factors.
The series of lemmas in the next section is devoted to this preparatory work.

3. Preliminaries

First, let us show that the scheme is in fact well-defined, in the sense that every
iterate is measurable if the random variables {ξk}k∈N are.

Lemma 3.1. Let Assumption 1 be fulfilled. Further, let {ξk}k∈N be a family of
jointly independent random variables. Then for every k ∈ N there exists a unique
mapping wk+1 : Ω → D (∇f) that fulfills (2.1) and is measurable with respect to the
σ-algebra generated by ξ1, . . . , ξk.

Proof. We define the mapping

h : D (∇f)× Ω → H, (u, ω) 7→ wk − (I + αkι∇f(·, ξk(ω)))u.

For almost all ω ∈ Ω, the mapping f(·, ξk(ω)) is lower semi-continuous, proper
and convex. Thus, by [27, Theorem A] ∇f(·, ξk(ω)) is maximal monotone. By [4,
Theorem 2.2], this shows that the operator ι−1 + αk∇f(·, ξk(ω)) : D (∇f) → H∗ is
surjective. Note that the two previously cited results are stated for multi-valued
operators. As we are in a more regular setting, the sub-differential of f(·, ξk(ω))
only consists of a single element at each point. Therefore, it is possible to apply
these multi-valued results also in our setting and interpret the appearing operators
as single-valued. Furthermore, due to the monotonicity of ∇f(·, ξk(ω)) it follows
that for u, v ∈ D (∇f)

⟨
(
ι−1 + αk∇f(·, ξk(ω))

)
u−

(
ι−1 + αk∇f(·, ξk(ω))

)
v, u− v⟩ ≥ ∥u− v∥2

which implies
∥∥(ι−1 + αk∇f(·, ξk(ω))

)
u−

(
ι−1 + αk∇f(·, ξk(ω))

)
v
∥∥ ≥ ∥u− v∥.

This verifies that I + αkι∇f(·, ξk(ω)) is injective. As we have proved that the
operator is both injective and surjective, it is, in particular, bijective. Therefore,
there exists a unique element wk+1(ω) such that

h(wk+1(ω), ω) = wk − (I + αkι∇f(·, ξk(ω)))wk+1(ω) = 0.

We can now apply [14, Lemma 2.1.4] or [15, Lemma 4.3] and obtain that ω 7→
wk+1(ω) is measurable. □

Proving that the scheme is always stable is relatively straightforward, as shown
in the next lemma. With some extra effort, we also get stability in stronger
norms, i.e. we can bound not only Ek

[
∥wk+1 − w∗∥2

]
but also higher moments

Ek

[
∥wk+1 −w∗∥2m

]
, m ∈ N. This will be important since we only have the weaker

local Lipschitz continuity stated in Assumption 1 rather than global Lipschitz con-
tinuity. The idea of the proof stems from a standard technique mostly applied in
the field of evolution equations in a variational framework, compare for example
[31, Lemma 8.6]. The main difficulty is to incorporate the stochastic gradient in
the presentation.

Lemma 3.2. Let Assumption 1 be fulfilled, and suppose that
∑∞

k=1 α
2
k < ∞. Then

there exists a constant D ≥ 0 depending only on ∥w1 − w∗∥, ∑∞
k=1 α

2
k and σ, such

that

Ek

[
∥wk+1 − w∗∥2m

]
≤ D

for all k ∈ N.
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Proof. Within the proof, we abbreviate the function f(·, ξk) by fk, k ∈ N. First, we
consider the case m = 1. Recall the identity (a− b, a) = 1

2

(
∥a∥2−∥b∥2+ ∥a− b∥2

)
,

a, b ∈ H. We write the scheme as

wk+1 − wk + αkι∇fk(w
k+1) = 0,

subtract αkι∇fk(w
∗) from both sides, multiply by two and test it with wk+1 −w∗

to obtain

∥wk+1 − w∗∥2 − ∥wk − w∗∥2 + ∥wk+1 − wk∥2

+ 2αk(ι∇fk(w
k+1)− ι∇fk(w

∗), wk+1 − w∗)

= −2αk(ι∇fk(w
∗), wk+1 − w∗).

For the right-hand side, we have by Young’s inequality that

− 2αk(ι∇fk(w
∗), wk+1 − w∗)

= −2αk⟨∇fk(w
∗), wk+1 − wk⟩ − 2αk⟨∇fk(w

∗), wk − w∗⟩
≤ 2αk∥∇fk(w

∗)∥H∗∥wk+1 − wk∥ − 2αk⟨∇fk(w
∗), wk − w∗⟩

≤ α2
k∥∇fk(w

∗)∥2H∗ + ∥wk+1 − wk∥2 − 2αk⟨∇fk(w
∗), wk − w∗⟩.

Together with the monotonicity condition, it then follows that

∥wk+1 − w∗∥2 − ∥wk − w∗∥2 ≤ α2
k∥∇fk(w

∗)∥2H∗ − 2αk⟨∇fk(w
∗), wk − w∗⟩.(3.1)

Since wk − w∗ is independent of ξk and Eξk [∇fk(w
∗)] = ∇F (w∗) = 0, taking the

expectation Eξk thus leads to the following bound:

Eξk
[
∥wk+1 − w∗∥2

]
≤ ∥wk − w∗∥2 + α2

kσ
2.

Repeating this argument, we obtain that

Ek

[
∥wk+1 − w∗∥2

]
≤ ∥w1 − w∗∥2 + σ2

k∑

j=1

α2
j .(3.2)

In order to find the higher moment bound, we recall (3.1). We then follow a similar
idea as in [10, Lemma 3.1], where we multiply this inequality with ∥wk+1 − w∗∥2
and use the identity (a− b)a = 1

2

(
|a|2 − |b|2 + |a− b|2

)
for a, b ∈ R. It then follows

that

∥wk+1 − w∗∥4 − ∥wk − w∗∥4 +
∣∣∥wk+1 − w∗∥2 − ∥wk − w∗∥2

∣∣2

≤
(
α2
k∥∇fk(w

∗)∥2H∗ − 2αk⟨∇fk(w
∗), wk − w∗⟩

)
∥wk+1 − w∗∥2

≤
(
α2
k∥∇fk(w

∗)∥2H∗ − 2αk⟨∇fk(w
∗), wk − w∗⟩

)

×
(
∥wk − w∗∥2 + α2

k∥∇fk(w
∗)∥2H∗ − 2αk⟨∇fk(w

∗), wk − w∗⟩
)

≤ α2
k∥wk − w∗∥2∥∇fk(w

∗)∥2H∗ − 2αk∥wk − w∗∥2⟨∇fk(w
∗), wk − w∗⟩

+ α4
k∥∇fk(w

∗)∥4H∗ − 4α3
k∥∇fk(w

∗)∥2H∗⟨∇fk(w
∗), wk − w∗⟩

+ 4α2
k

(
⟨∇fk(w

∗), wk − w∗⟩
)2
.
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Applying Young’s inequality to the first and fourth term of the previous row then
implies that

∥wk+1 − w∗∥4 − ∥wk − w∗∥4

≤ α2
k

2
∥wk − w∗∥4 − 2αk∥wk − w∗∥2⟨∇fk(w

∗), wk − w∗⟩

+
(
3α4

k +
α2
k

2

)
∥∇fk(w

∗)∥4H∗ + 6α2
k∥∇fk(w

∗)∥2H∗∥wk − w∗∥2

≤ α2
k

2
∥wk − w∗∥4 − 2αk∥wk − w∗∥2⟨∇fk(w

∗), wk − w∗⟩

+
(
3α4

k +
α2
k

2

)
∥∇fk(w

∗)∥4H∗ + 3α2
k∥∇fk(w

∗)∥4H∗ + 3α2
k∥wk − w∗∥4

≤ 7α2
k

2
∥wk − w∗∥4 − 2αk∥wk − w∗∥2⟨∇fk(w

∗), wk − w∗⟩

+
(
3α4

k +
7α2

k

2

)
∥∇fk(w

∗)∥4H∗ .

Summing up from j = 1 to k and taking the expectation Ek, yields

Ek

[
∥wk+1 − w∗∥4

]

≤ ∥w1 − w∗∥4 +
k∑

j=1

7α2
j

2
Ej−1

[
∥wj − w∗∥4

]
+ σ4

k∑

j=1

(
3α4

j +
7α2

j

2

)
.

We then apply the discrete Grönwall inequality for sums (see, e.g., [11]) which
shows that

Ek

[
∥wk+1 − w∗∥4

]
≤
(
∥w1 − w∗∥4 + σ4

k∑

j=1

(
3α4

j +
7α2

j

2

))
exp
(7
2

k∑

j=1

α2
j

)
.

For the next higher bound Ek

[
∥wk+1 − w∗∥8

]
, we recall that

∥wk+1 − w∗∥4 − ∥wk − w∗∥4

≤ 7α2
k

2
∥wk − w∗∥4 − 2αk∥wk − w∗∥2⟨∇fk(w

∗), wk − w∗⟩

+
(
3α4

k +
7α2

k

2

)
∥∇fk(w

∗)∥4H∗ ,

which we can multiply with ∥wk+1 − w∗∥4 in order to follow the same strategy as
before. Following this approach, we find bounds for Ek

[
∥wk+1−w∗∥2m

]
recursively

for all m ∈ N. □

Remark 3.1. In particular, Lemma 3.2 implies that there exists a constant D
depending on ∥w1 − w∗∥, ∑∞

k=1 α
2
k and σ such that

Ek

[
∥wk+1 − w∗∥p

]
≤ D

for all p ≤ 2m and k ∈ N. Further, comparing (3.2)

Ek

[
∥wk+1 − w∗∥2

]
≤ ∥w1 − w∗∥ +

k∑

i=1

α2
iEξi

[
∥∇f(w∗, ξi)∥2

]
,

to the corresponding bound for the SGD

Ek

[
∥wk+1 − w∗∥2

]
≤ ∥w1 − w∗∥ +

k∑

i=1

α2
iEi

[
∥∇f(wi, ξi)∥2

]
,

indicates that the SPI has a smaller a priori bound than the SGD. This bound
plays a crucial part in the error constant in the convergence proof of Theorem 2.1.
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In practice one would expect the terms Eξi
[
∥∇f(w∗, ξi)∥2

]
to be significantly

smaller than Ei

[
∥∇fi(w

i, ξi)∥2
]
if the variance of ∇f(·, ξi) is small. Note that

since we assume that we have an unbiased estimate, the variance is given by

Eξi
[
∥∇f(w, ξi)∥2

]
− ∥Eξi

[
∇f(w, ξi)

]
∥2 = Eξi

[
∥∇f(w, ξi)∥2

]
.

Following Ryu & Boyd [32], we now introduce the function f̃(·, ξ) : H × Ω →
(−∞,∞] given by

f̃(u, ξ) = f(u0, ξ) + ⟨∇f(u0, ξ), u− u0⟩ +
1

2
(Mξ(u− u0), u− u0),(3.3)

where u0 ∈ D (∇f) is a fixed parameter. This mapping is a convex approximation
of f . Furthermore, we define the function r̃(·, ξ) : H × Ω → (−∞,∞] given by

r̃(u, ξ) = f(u, ξ)− f̃(u, ξ).(3.4)

Their gradients ∇f̃(·, ξ) : H × Ω → H∗ and ∇r̃(·, ξ) : D (∇f) × Ω → H∗ can be
stated as

∇f̃(u, ξ) = ∇f(u0, ξ) + (Mξ(u− u0), ·), u ∈ H,

∇r̃(u, ξ) = ∇f(u, ξ)−∇f(u0, ξ)− (Mξ(u− u0), ·), u ∈ D (∇f)

almost surely. In the following lemma, we collect some standard properties of these
operators.

Lemma 3.3. The function r̃(·, ξ) defined in (3.4) is convex almost surely, i.e., it
fulfills r̃(u, ξ) ≥ r̃(v, ξ) + ⟨∇r̃(v, ξ), u− v⟩ for all u, v ∈ D (∇f) almost surely. As a
consequence, the gradient ∇r̃(·, ξ) is monotone almost surely.

Proof. In the following proof, let us omit ξ for simplicity and let u, v ∈ D (∇f) be
given. Due to the monotonicity property of ∇f stated in Assumption 1, it follows
that

f(u) ≥ f(v) + ⟨∇f(v), u− v⟩ + 1

2
(M(u− v), u− v).

For the function f̃ we can write

f̃(u) = f(u0) + ⟨∇f(u0), u− u0⟩ +
1

2
(M(u− u0), u− u0),

∇f̃(u) = ∇f(u0) + (M(u− u0), ·) and ∇2f̃(u) = M.

All further derivatives are zero. Thus, we can use a Taylor expansion around v to
write

f̃(u) = f̃(v) + ⟨∇f̃(v), u− v⟩ + 1

2
(M(u− v), u− v).

It then follows that

r̃(u) ≥ f(v) + ⟨∇f(v), u− v⟩ + 1

2
(M(u− v), u− v)

−
(
f̃(v) + ⟨∇f̃(v), u− v⟩ + 1

2
(M(u− v), u− v)

)

= r̃(v) + ⟨∇r̃(v), u− v⟩.
By [41, Proposition 25.10], it follows that ∇r̃ is monotone. □

The following lemma demonstrates that the resolvents Tf̃ ,ξ and certain pertur-
bations of them are well-defined. Furthermore, we will provide a more explicit
formula for such resolvents. A comparable result is mentioned in [32, page 10], we
include a proof for the sake of completeness.
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Lemma 3.4. Let Assumption 1 be fulfilled and let f̃(·, ξ) be defined as in (3.3).
Then the operator

Tf̃ ,ξ = (I + ι∇f̃(·, ξ))−1 : H × Ω → H

is well-defined. If a function r(·, ξ) : H × Ω → (−∞,∞] is Gâteaux differentiable
with the common domain D (∇r) = D (∇f), lower semi-continuous, convex and
proper almost surely, then

Tf̃+r,ξ = (I + ι∇f̃(·, ξ) + ι∇r(·, ξ))−1 : H × Ω → D (∇f)

is well-defined.
If there exist Qξ : D (∇f) × Ω → H∗ and zξ : Ω → H∗ such that ∇r(u, ξ) =

Qξu+ zξ then the resolvent can be represented by

Tf̃+r,ξu = (I +Mξ + ιQξ)
−1
(
u− ι∇f(u0, ξ) +Mξu0 − ιzξ

)
.

Proof. For simplicity, let us omit ξ again. In order to prove that Tf̃ and Tf̃+r are

well-defined, we can apply [27, Theorem A] and [4, Theorem 2.2] analogously to
the argumentation in the proof of Lemma 3.1.

Assuming that ∇r(u) = Qu+ z, we find an explicit representation for Tf̃+r. To
this end, for v ∈ H, consider

(I + ι∇f̃ + ι∇r)−1v = Tf̃+rv =: u ∈ D (∇f) .

Then it follows that

v = (I + ι∇f̃ + ι∇r)u = (I +M + ιQ)u+ ι∇f(u0)−Mu0 + ιz.

Rearranging the terms, yields

Tf̃+rv = (I +M + ιQ)−1
(
v − ι∇f(u0) +Mu0 − ιz

)
.

□

Next, we will show that the contraction factors of Tf,ξ and Tf̃ ,ξ are related.
For this, we need the following basic identities and some stronger inequalities that
hold for symmetric positive operators on H. These results are fairly standard and
similar statements can be found in [32, Lemma 9 and Lemma 10]. For the sake
of completeness, we provide an alternative proof that is better adapted to our
notation.

Lemma 3.5. Let Assumption 1 be satisfied and let f̃(·, ξ) and r̃(·, ξ) be given as in
(3.3) and (3.4), respectively. Then the identities

ι∇f(Tf,ξ, ξ) = I − Tf,ξ and ι∇f̃(Tf,ξ, ξ) + Tf,ξ − I = −ι∇r̃(Tf,ξ, ξ)

are fulfilled almost surely.

Proof. By the definition of Tf,ξ, we have that

Tf,ξ + ι∇f(Tf,ξ, ξ) = (I + ι∇f(·, ξ))Tf,ξ = I,

from which the first claim follows immediately. The second identity then follows
from

ι∇f̃(Tf,ξ, ξ) + Tf,ξ − I = ι∇f̃(Tf,ξ, ξ)− ι∇f(Tf,ξ, ξ) = −ι∇r̃(Tf,ξ, ξ).

□

As a consequence of Lemma 3.5 we have the following basic inequalities:
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Lemma 3.6. Let Assumption 1 be satisfied. It then follows that

∥Tf,ξu− u∥ ≤ ∥∇f(u, ξ)∥H∗

almost surely for every u ∈ D (∇f). Additionally, if for R > 0 the bound ∥u∥ +
∥∇f(u, ξ)∥ ≤ R holds true almost surely, then

∥ι−1(Tf,ξu− u) +∇f(u, ξ)∥H∗ ≤ Lξ(R)∥∇f(u, ξ)∥H∗

is fulfilled almost surely.

Proof. In order to shorten the notation, we omit the ξ in the following proof and
let u be in D (∇f). For the first inequality, we note that since ∇f is monotone, we
have

⟨∇f(Tfu)−∇f(u), Tfu− u⟩ ≥ 0.

Thus, by the first identity in Lemma 3.5, it follows that

⟨−∇f(u), Tfu− u⟩ = ⟨∇f(Tfu)−∇f(u), Tfu− u⟩ − ⟨∇f(Tfu), Tfu− u⟩
≥ ⟨ι−1(Tfu− u), Tfu− u⟩
= (Tfu− u, Tfu− u) = ∥Tfu− u∥2.

But by the Cauchy-Schwarz inequality, we also have

⟨−∇f(u), Tfu− u⟩ ≤ ∥∇f(u)∥H∗∥Tfu− u∥,
which in combination with the previous inequality proves the first claim.

The second inequality follows from the first part of this lemma. Because

∥Tfu∥ ≤ ∥Tfu− u∥+ ∥u∥ ≤ ∥∇f(u)∥H∗ + ∥u∥,
both u and Tfu are in a ball of radius R. Thus, we obtain

∥ι−1(Tfu− u) +∇f(u)∥H∗ = ∥∇f(u)−∇f(Tfu)∥H∗

≤ L(R)∥u− Tfu∥ ≤ L(R)∥∇f(u)∥H∗ .

□

Lemma 3.7. Let Q,S ∈ L(H) be symmetric operators. Then the following holds:

• If Q is invertible and S and Q−1 are strictly positive, then (Q+S)−1 < Q−1.
If S is only positive, then (Q+ S)−1 ≤ Q−1.

• If Q is a positive and contractive operator, i.e. ∥Qu∥ ≤ ∥u∥ for all u ∈ H,
then it follows that ∥Qu∥2 ≤ (Qu, u) for all u ∈ H.

• If Q is a strongly positive invertible operator, such that there exists β > 0
with (Qu, u) ≥ β∥u∥2 for all u ∈ H, then ∥Qu∥ ≥ β∥u∥ for all u ∈ H and
∥Q−1∥L(H) ≤ 1

β .

Proof. We start by expressing (Q + S)−1 in terms of Q−1 and S, similar to the
Sherman-Morrison-Woodbury formula for matrices [18]. First observe that the
operator (I +Q−1S)−1 ∈ L(H) by e.g. [19, Lemma 2A.1]. Then, since

(
Q−1 −Q−1S

(
I +Q−1S

)−1
Q−1

)
(Q+ S)

= I +Q−1S −Q−1S
(
I +Q−1S

)−1(
I +Q−1S

)
= I

and

(Q+ S)
(
Q−1 −Q−1S

(
I +Q−1S

)−1
Q−1

)

= I + SQ−1 − S
(
I +Q−1S

)(
I +Q−1S

)−1
Q−1 = I,

we find that

(Q+ S)−1 = Q−1 −Q−1S
(
I +Q−1S

)−1
Q−1.
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Since Q−1 is symmetric, we see that (Q+S)−1 < Q−1 if and only if S
(
I+Q−1S

)−1

is strictly positive. But this is true, as we see from the change of variables z =
(I +Q−1S)−1u. Because then

(
S
(
I +Q−1S

)−1
u, u

)
=
(
Sz, z +Q−1Sz

)
=
(
Sz, z

)
+
(
Q−1Sz, Sz

)
> 0

for any u ∈ H, u ̸= 0, since S and Q−1 are strictly positive. If S is only positive,

it follows analogously that
(
S
(
I +Q−1S

)−1
u, u

)
≥ 0.

In order to prove the second statement, we use the fact that there exists a unique
symmetric and positive square root Q1/2 ∈ L(H) such that Q = Q1/2Q1/2. Since

∥Q∥ = supx∈H(Qx, x) = supx∈H(Q
1
2x,Q

1
2x) = ∥Q1/2∥2, also Q1/2 is contractive.

Thus, it follows that

∥Qu∥2 = ∥Q1/2Q
1/2u∥2 ≤ ∥Q1/2u∥2 = (Q

1/2u,Q
1/2u) = (Qu, u).

Now, we prove the third statement. First we notice that (Qu, u) ≥ β∥u∥2 and
(Qu, u) ≤ ∥Qu∥∥u∥ imply that ∥Qu∥ ≥ β∥u∥ for all u ∈ H. Substituting v = Q−1u,
then shows ∥v∥ ≥ β∥Q−1v∥, which proves the final claim. □

The previous lemma now allows us to extend [32, Theorem 10], which we have
reformulated and restructured to match our setting. It relates the contraction
factors of the true and approximated operators.

Lemma 3.8. Let Assumption 1 be fulfilled and let f̃(·, ξ) be given as in (3.3). Then

Eξ

[
∥Tf,ξu− Tf,ξv∥2

∥u− v∥2

]
≤
(
Eξ

[
∥Tf̃ ,ξu− Tf̃ ,ξv∥2

∥u− v∥2

])1/2

holds for every u, v ∈ H.

Proof. For better readability, we once again omit ξ where there is no risk of confu-
sion. For u, v ∈ D (∇f) with u ̸= v and ε > 0, we approximate the function r̃(·, ξ)
defined in (3.4) by

r̃ε(·, ξ) : H × Ω → (−∞,∞], r̃ε(z, ξ) = ⟨∇r̃(Tfu, ξ), z⟩ +
(
⟨vε, z − Tfu⟩

)2

2aε
,

where

vε = −∇r̃(Tfu) +∇r̃(Tfv) + ει−1(Tfv − Tfu) ∈ H and aε = ⟨vε, Tfv − Tfu⟩.

As we can write

aε = ⟨−∇r̃(Tfu) +∇r̃(Tfv) + ει−1(Tfv − Tfu), Tfv − Tfu⟩
= ⟨∇r̃(Tfu)−∇r̃(Tfv), Tfu− Tfv⟩ + ε(Tfv − Tfu, Tfv − Tfu)

≥ ε∥Tfv − Tfu∥2 > 0,

r̃ε is well-defined. The derivative is given by ∇r̃ε(·, ξ) : H × Ω → H∗,

∇r̃ε(z) = ∇r̃(Tfu) +
⟨vε, z − Tfu⟩

aε
vε =

⟨vε, z⟩
aε

vε +∇r̃(Tfu)−
⟨vε, Tfu⟩

aε
vε.
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This function ∇r̃ε is an interpolation between the points

∇r̃ε(Tfu) = ∇r̃(Tfu) and

∇r̃ε(Tfv) = ∇r̃(Tfu) +
⟨vε, Tfv − Tfu⟩

aε
vε

= ∇r̃(Tfu) +
⟨vε, Tfv − Tfu⟩
⟨vε, Tfv − Tfu⟩

vε

= ∇r̃(Tfu)−∇r̃(Tfu) +∇r̃(Tfv) + ει−1(Tfv − Tfu)

= ∇r̃(Tfv) + ει−1(Tfv − Tfu).

Furthermore, since Tf̃+r̃ε
= (I + ι∇f̃ + ι∇r̃ε)

−1, it follows that

(I + ι∇f̃ + ι∇r̃ε)Tfu = Tfu+ ι∇f̃(Tfu) + ι∇r̃(Tfu)

= Tfu+ ι∇f(Tfu) = (I + ι∇f)Tfu = u,

and therefore

Tfu = (I + ι∇f̃ + ι∇r̃ε)
−1u = Tf̃+r̃ε

u.

Applying Lemma 3.5, we find that

(I + ι∇f̃ + ι∇r̃ε)Tfv

= Tfv + ι∇f̃(Tfv) + ι∇r̃(Tfv) + ε(Tfv − Tfu)

= Tfv + ι∇f(Tfv) + ε(Tfv − Tfu) = v + ε(Tfv − Tfu).

This shows that

Tfv = (I + ι∇f̃ + ι∇r̃ε)
−1(v + ε(Tfv − Tfu)) = Tf̃+r̃ε

(v + ε(Tfv − Tfu)).(3.5)

Using the explicit representation of Tf̃+r̃ε
from Lemma 3.4, it follows that

Tf̃+r̃ε
z =

(
I +M + ι

( ⟨vε, ·⟩
aε

vε

))−1(
z − ι∇f(u0)

+Mu0 − ι
(
∇r̃(Tfu)−

⟨vε, Tfu⟩
aε

vε

))
.

Therefore, we have

∥Tf̃+r̃ε
v − Tf̃+r̃ε

(v + ε(Tfv − Tfu))∥

≤
∥∥∥
(
I +M + ι

( ⟨vε, ·⟩
aε

vε

))−1∥∥∥
L(H)

∥v − v − ε(Tfv − Tfu)∥

≤ ε∥Tfv − Tfu∥ → 0 as ε → 0,

since

((
I +M + ι

( ⟨vε, ·⟩
aε

vε

))
u, u

)
≥ ∥u∥2

means that we can apply Lemma 3.7. Thus, this shows that Tfu = Tf+r̃εu and
Tfv = limε→0 Tf̃+r̃ε

v. Further, we can state an explicit representation for Tf̃ using
Lemma 3.4 given by

Tf̃z = (I + ι∇f̃)−1z = (I +M)−1
(
z − ι∇f(u0) +Mu0

)
.
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For n = u−v
∥u−v∥ with ∥n∥ = 1, we obtain using Lemma 3.7

∥Tf̃u− Tf̃v∥
∥u− v∥ = ∥(I +M)−1n∥

≥ ((I +M)−1n, n)

≥
((

I +M + ι
( ⟨vε, ·⟩

aε
vε

))−1

n, n
)

≥
∥∥∥
(
I +M + ι

( ⟨vε, ·⟩
aε

vε

))−1

n
∥∥∥
2

=
∥Tf̃+r̃ε

u− Tf̃+r̃ε
v∥2

∥u− v∥2 → ∥Tfu− Tfv∥2
∥u− v∥2 as ε → 0.

Finally, as Eξ

[∥Tf̃u−Tf̃v∥
∥u−v∥

]
is finite, we can apply the dominated convergence theo-

rem to obtain that

Eξ

[∥Tfu− Tfv∥2
∥u− v∥2

]
≤ Eξ

[∥Tf̃u− Tf̃v∥
∥u− v∥

]
≤
(
Eξ

[∥Tf̃u− Tf̃v∥2
∥u− v∥2

]) 1
2

.

□

After having established a connection between the contraction properties of Tf,ξ

and Tf̃ ,ξ, the next step is to provide a concrete result for the contraction factor of
Tf̃ ,ξ. Applying Lemma 3.4, we can express this resolvent in terms of Mξ, which

is easier to handle due to its linearity. The following lemma extends [32, Theo-
rem 11]. As we are in an infinite dimensional setting, we can no longer argue using
the smallest eigenvalue of an operator. This proof instead uses the convexity pa-
rameters directly. Moreover, we provide an explicit, non-asymptotic, bound for the
contraction constant.

Lemma 3.9. Let Assumption 1 be satisfied and let f̃(·, ξ) be given as in (3.3).
Then for u, v ∈ H and α > 0,

Eξ

[
∥Tαf̃,ξu− Tαf̃,ξv∥2

]
< Eξ

[
∥(I + αMξ)

−1∥2L(H)

]
∥u− v∥2

is fulfilled. Furthermore, it follows that

Eξ

[
∥(I + αMξ)

−1∥2L(H)

]
< 1− 2µα+ 3ν2α2.

Proof. Due to the explicit representation of Tαf̃,ξ stated in Lemma 3.4, we find that

Tαf̃,ξu− Tαf̃,ξv = (I + αMξ)
−1(u− v)

for u, v ∈ H. As u− v does not depend on Ω, it follows that

Eξ

[
∥(I + αMξ)

−1(u− v)∥2
]
≤ Eξ

[
∥(I + αMξ)

−1∥2L(H)

]
∥u− v∥2.

Thus, we have reduced the problem to a question about “how contractive” the
resolvent of Mξ is in expectation. We note that for any u ∈ H, we have

((I + αMξ)u, u) ≥ (1 + µξα)∥u∥2.
Due to Lemma 3.7 it follows that

∥(I + αMξ)
−1∥2L(H) ≤ (1 + µξα)

−2.

The right-hand-side bound is a C2(− 1
µξ
,∞)-function with respect to α or even a

C2(R)-function if µξ = 0. By a second-order expansion in a Taylor series we can
therefore conclude that

∥(I + αMξ)
−1∥2L(H) ≤ 1− 2µξα+ 3µ2

ξα
2.
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Combining these results, we obtain

Eξ

[
∥(I + αMξ)

−1∥2L(H)

]
≤ Eξ

[
1− 2µξα+ 3µ2

ξα
2
]
= 1− 2µα+ 3ν2α2.

□

Finally, the proof of the main theorem relies on iterating the step-wise bounds
arising from the contraction properties of the resolvents which we just established.
This leads to certain products of the contraction factors. The following algebraic
inequalities show that these are bounded in the desired way. While this type of
result has been stated previously for first-order polynomials in 1/j (see e.g. [24,
Theorem 14]), we prove here a particular version for second-order polynomials that
matches the approximation of the contraction factor stated in Lemma 3.9.

Lemma 3.10. Let C1, C2 > 0, p > 0 and r ≥ 0 satisfy C1p > r and 4C2 ≥ C2
1 .

Then the following inequalities are satisfied:

(i)
∏k

j=1

(
1− C1

j + C2

j2

)p ≤ exp
(

C2pπ
2

6

)
(k + 1)−C1p,

(ii)
∑k

j=1
1

j1+r

∏k
i=j+1

(
1− C1

i + C2

i2

)p ≤ 2C1pexp
(

C2pπ
2

6

)
1

C1p−r (k + 1)−r.

Proof. The proof relies on the trivial inequality 1 + u ≤ eu for u ≥ −1 and the
following two basic inequalities involving (generalized) harmonic numbers

ln (k + 1)− ln (m) ≤
k∑

i=m

1

i
and

k∑

i=1

iC−1 ≤ 1

C
(k + 1)C .

The first one follows quickly by treating the sum as a lower Riemann sum approx-

imating the integral
∫ k+1

m
u−1 du. The second one can be proved analogously by

approximating the integral
∫ k+1

0
uC−1 du with an upper (C < 1) or lower (C > 1)

Riemann sum.
The condition 4C2 ≥ C2

1 implies that all the factors in the product (i) are
positive. We therefore have that 0 ≤ 1 − C1

j + C2

j2 ≤ exp(−C1

j )exp(C2

j2 ). Thus, it

follows that
k∏

j=1

(
1− C1

j
+

C2

j2

)p
≤ exp

(
− C1p

k∑

j=1

1

j

)
exp
(
C2p

k∑

j=1

1

j2

)

≤ exp
(
− C1p ln (k + 1)

)
exp
(C2pπ

2

6

)
,

from which the first claim follows directly. For the second claim, we similarly have

k∑

j=1

1

j1+r

k∏

i=j+1

(
1− C1

i
+

C2

i2

)p
≤ exp

(C2pπ
2

6

) k∑

j=1

1

j1+r
exp

(
− C1p

k∑

i=j+1

1

i

)
,

where the latter sum can be bounded by

k∑

j=1

1

j1+r
exp
(
− C1p

k∑

i=j+1

1

i

)
≤

k∑

j=1

1

j1+r
exp
(
− C1p ln

(k + 1

j + 1

))

≤
k∑

j=1

1

j1+r

(k + 1

j + 1

)−C1p

= (k + 1)−C1p
k∑

j=1

jC1p−r−1 ·
(j + 1

j

)C1p

≤ 2C1p

C1p− r
(k + 1)−r.
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The final inequality is where we needed C1p > r, in order to have something better
than j−1 in the sum. □

4. Proof of main theorem

Using the lemmas presented in the previous section, we are now in a position to
prove Theorem 2.1. Compared to the earlier results in the literature, we can provide
a more general result with respect to the Lipschitz condition. More precisely, with
the help of our a priori bound from Lemma 3.2, we can exchange the global Lipschitz
condition by a local Lipschitz condition.

Proof of Theorem 2.1. Given the sequence of mutually independent random vari-
ables ξk, we abbreviate the random functions fk = f(·, ξk) and Tk = Tαkf,ξk , k ∈ N.
Then the scheme can be written as wk+1 = Tkw

k. If Tkw
∗ = w∗, we would essen-

tially only have to invoke Lemma 3.8 and Lemma 3.9 to finish the proof. But due
to the stochasticity, this does not hold, so we need to be more careful.

We begin by adding and subtracting the term Tkw
∗ and find that

∥wk+1 − w∗∥2 = ∥Tkw
k − Tkw

∗∥2 + 2(Tkw
k − Tkw

∗, Tkw
∗ − w∗) + ∥Tkw

∗ − w∗∥2.
By Lemma 3.8 and Lemma 3.9 the expectation Eξk of the first term on the right-

hand side is bounded by (1− 2µαk +3ν2α2
k)

1/2∥wk −w∗∥2 while by Lemma 3.6 the
last term is bounded in expectation by α2

kσ
2. The second term is the problematic

one. We add and subtract both wk and w∗ in order to find terms that we can
control:

(Tkw
k − Tkw

∗, Tkw
∗ − w∗)

=
(
(Tk − I)wk − (Tk − I)w∗, (Tk − I)w∗) +

(
wk − w∗, (Tk − I)w∗)

=: I1 + I2.

In order to bound I1 and I2, we first need to apply the a priori bound from
Lemma 3.2. This will also enable us to utilize the local Lipschitz condition. First,
we notice that due to Lemma 3.6, we find that

(
Eξk

[
∥Tkw

∗∥j
]) 1

j ≤ ∥w∗∥+
(
Eξk

[
∥∇fk(w

∗)∥jH∗

]) 1
j ≤ ∥w∗∥+ σ

is bounded for j ≤ 2m. As Tk is a contraction, we also obtain
(
Ek

[
∥Tkw

k∥j
]) 1

j ≤
(
Ek

[
∥Tkw

k − Tkw
∗∥j
]) 1

j +
(
Eξk

[
∥Tkw

∗∥j
]) 1

j

≤
(
Ek

[
∥wk − w∗∥j

]) 1
j + ∥w∗∥+ σ.

Thus, there exists a random variable R1 such that

max
(
∥Tkw

k∥, ∥Tkw
∗∥
)
≤ R1,

and Ek[R
j
1] is bounded for j ≤ 2m. For I1, we then obtain that

I1 ≤
(
(Tk − I)wk − (Tk − I)w∗, (Tk − I)w∗)

≤ ∥αk∇fk(Tkw
k)− αk∇fk(Tkw

∗)∥H∗∥αk∇fk(w
∗)∥H∗

≤ α2
kLξk(R1)∥Tkw

k − Tkw
∗∥∥∇fk(w

∗)∥H∗

≤ α2
kLξk(R1)∥wk − w∗∥∥∇fk(w

∗)∥H∗ ,

where we used the fact that Tk is non-expansive in the last step. Taking the
expectation, we then have by Hölder’s inequality that

Ek[I1] ≤ α2
kEk

[
Lξk(R1)∥wk − w∗∥∥∇fk(w

∗)∥H∗
]

≤ α2
kL̃1

(
Ek−1

[
∥wk − w∗∥2m

])2−m(
Eξk

[
∥∇fk(w

∗)∥2mH∗

])2−m

,
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where

L̃1 =

{(
Ek

[
P (R1)

2m

2m−2
]) 2m−2

2m , m > 1,

sup |P (R1)|, m = 1.

As P is a polynomial of at most order 2m − 2, the expression only contains terms
Rj

1 where the exponent j is at most
(

2m

2m−2

)(
2m − 2

)
= 2m. Hence L̃1 is bounded,

and in view of Lemma 3.2 we get that

Ek[I1] ≤ D1α
2
k,

where D1 ≥ 0 is a constant depending only on ∥w∗∥, ∥w1 − w∗∥, σ and η. For I2,
we add and subtract αkι∇fk(w

∗) to get

I2 =
(
wk − w∗, (Tk − I)w∗)

=
(
wk − w∗, (Tk − I)w∗ + αkι∇fk(w

∗)
)
−
(
wk − w∗, αkι∇fk(w

∗)
)
.

Since wk − w∗ is independent of αk∇fk(w
∗), it follows that

Eξk [
(
wk − w∗, αkι∇fk(w

∗)
)
] =

(
wk − w∗,Eξk [αkι∇fk(w

∗)]
)
= 0.

Using the Cauchy-Schwarz inequality and Lemma 3.6, we find that

Ek[I2] ≤ Ek

[
∥wk − w∗∥∥ι−1(Tk − I)w∗ + αk∇fk(w

∗)∥H∗
]

≤ Ek

[
Lξk(R2)α

2
k∥wk − w∗∥∥∇fk(w

∗)∥H∗
]

≤ α2
kL̃2

(
Ek−1

[
∥wk − w∗∥2m

])2−m(
Eξk

[
∥∇fk(w

∗)∥2mH∗

])2−m

,

where R2 = max(∥w∗∥, ∥∇fk(w
∗)∥H∗) and

L̃2 =

{(
Ek

[
P (R2)

2m

2m−2
]) 2m−2

2m , m > 1,

sup |P (R2)|, m = 1.

Just as for I1, we therefore get by Lemma 3.2 that

Ek[I2] ≤ D2α
2
k,

where D2 ≥ 0 is a constant depending only on ∥w∗∥, ∥w1 − w∗∥, σ and η.
Summarising, we now have

Ek

[
∥wk+1 − w∗∥2

]
≤ C̃kEk−1

[
∥wk − w∗∥2

]
+ α2

kD

with C̃k =
(
1− 2µαk +3ν2α2

k

)1/2
and D = σ2 +D1 +D2. Recursively applying the

above bound yields

Ek

[
∥wk+1 − w∗∥2

]
≤

k∏

j=1

C̃j∥w1 − w∗∥2 +D

k∑

j=1

α2
j

k∏

i=j+1

C̃i.

Applying Lemma 3.10 (i) and (ii) with p = 1/2, r = 1, C1 = 2µη and C2 = 3ν2η2

then shows that
k∏

j=1

C̃j ≤ exp
(ν2η2π2

4

)
(k + 1)−µη

and
k∑

j=1

α2
j

k∏

i=j+1

C̃i ≤ η22µηexp
(ν2η2π2

4

) 1

µη − 1
(k + 1)−1.

Thus, we finally arrive at

Ek

[
∥wk+1 − w∗∥2

]
≤ C

k + 1
,
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where C depends on ∥w∗∥, ∥w1 − w∗∥, µ, σ and η. □

Remark 4.1. The above proof is complicated mainly due to the stochasticity and
due to the lack of strong convexity. We consider briefly the simpler, deterministic,
full-batch, case with

wk+1 = wk − αk∇F (wk+1),

where F is strongly convex with convexity constant µ. Then it can easily be shown
that

(∇F (v)−∇F (w), v − w) ≥ µ∥v − w∥2.
This means that

∥
(
I + α∇F

)−1
(v)−

(
I + α∇F

)−1
(w)∥ ≤ (1 + αµ)−1∥v − w∥,

i.e. the resolvent is a strict contraction. Since ∇F (w∗) = 0, it follows that
(
I +

α∇F
)−1

w∗ = w∗ so a simple iterative argument shows that

∥wk+1 − w∗∥2 ≤
k∏

j=1

(
1 + αjµ

)−1∥w1 − w∗∥2.

Using (1 + αµ)−1 ≤ 1− µα + µ2α2, choosing αk = η/k and applying Lemma 3.10
then shows that

∥wk+1 − w∗∥2 ≤ C(k + 1)−1

for appropriately chosen η. In particular, these arguments do not require the Lips-
chitz continuity of ∇F , which is needed in the stochastic case to handle the terms
arising due to ∇f(w∗, ξ) ̸= 0.

5. Numerical experiments

In order to illustrate our results, we set up a numerical experiment along the
lines given in the introduction. In the following, let H = L2(0, 1) be the Lebesgue
space of square integrable functions equipped with the usual inner product and
norm. Further, let xi

j ∈ H for i = 1, j = 1, . . . , ⌊n
2 ⌋ and i = 2, j = ⌊n

2 ⌋ + 1, . . . , n
be elements from two different classes within the space H. In particular, we choose
each x1

j to be a polynomial of degree 4 and each x2
j to be a trigonometric function

with bounded frequency for j = 1, . . . , n. The polynomial coefficients and the
frequencies were randomly chosen.

We want to classify these functions as either polynomial or trigonometric. To
do this, we set up an affine (SVM-like) classifier by choosing the loss function
ℓ(h, y) = ln(1 + e−hy) and the prediction function h([w,w], x) = (w, x) + w with
[w,w] ∈ L2(0, 1) × R. Without w, this would be linear, but by including w we
can allow for a constant bias term and thereby make it affine. We also add a
regularization term λ

2 ∥w∥2 (not including the bias), such that the minimization
objective is

F ([w,w], ξ) =
1

n

n∑

j=1

ℓ(h([w,w], xj), yj) +
λ

2
∥w∥2,

where [xj , yj ] = [x1
j ,−1] if j ≤ ⌊n

2 ⌋ and [xj , yj ] = [x2
j , 1] if j > ⌊n

2 ⌋, similar to
Equation (1.2). In one step of SPI, we use the function

f([w,w], ξ) = ℓ(h([w,w], xξ), yξ) +
λ

2
∥w∥2,

with a random variable ξ : Ω → {1, . . . , n}. Since we cannot do computations
directly in the infinite-dimensional space, we discretize all the functions using N
equidistant points in [0, 1], omitting the endpoints. For each N , this gives us an
optimization problem on RN , which approximates the problem on H.
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For the implementation, we make use of the following computational idea, which
makes SPI essentially as fast as SGD. Differentiating the chosen ℓ and h shows that
the scheme is given by the iteration

[w,w]k+1 = [w,w]k + ck[xk, 1]− λαk[w, 0]
k+1,

where ck = αkyk

1+exp((wk+1,xk)yk+wk+1yk)
. This is equivalent to

wk+1 =
1

1 + αkλ

(
wk + ckxk

)
and wk+1 = wk + ck.

Inserting the expression for [w,w]k+1 in the definition of ck, we obtain that

ck =
αkyk

1 + exp
(

1
1+αkλ

(wk + ckxk, xk)yk + (wk + ck)yk

) .

We thus only need to solve one scalar-valued equation. This is at most twice
as expensive as SGD, since the equation solving is essentially free and the only
additional costly term is (xk, xk) (the term (wk, xk) of course has to be computed
also in SGD). By storing the scalar result, the extra cost will be essentially zero if
the same sample is revisited. We note that extending this approach to larger batch-
sizes is straightforward. If the batch size is B, then one has to solve a B-dimensional
equation.

Using this idea, we implemented the method in Python and tested it on a series
of different discretizations. We took n = 1000, i.e. 500 functions of each type,
M = 10000 time steps and discretization parameters N = 100 · 2i for i = 1, . . . , 11
to approximate the infinite dimensional space L2(0, 1). We used λ = 10−3 and the
initial step size η = 2

λ , since in this case it can be shown that µ ≥ λ. There is
no closed-form expression for the exact minimum w∗, so instead we ran SPI with
10M time steps and used the resulting reference solution as an approximation to
w∗. Further, we approximated the expectation Ek by running the experiment 100
times and averaging the resulting errors. In order to compensate for the vectors
becoming longer as N increases, we measure the errors in the RMS-norm ∥ · ∥N =
∥ · ∥RN /

√
N + 1. As N → ∞, this tends to the L2 norm.

Figure 1 shows the resulting approximated errors Ek−1[∥wk − w∗∥2N ]. As ex-
pected, we observe convergence proportional to 1/k for all N . The error constants
do vary to a certain extent, but they are reasonably similar. As the problem ap-
proaches the infinite-dimensional case, they vary less. In order to decrease the
computational requirements, we only compute statistics at every 100 time steps,
this is why the plot starts at k = 100.

In contrast, redoing the same experiment but with the explicit SGD method
instead results in Figure 2. We note that except for N = 200 and N = 400, the
method seemingly does not converge at all. This is partially explained by the fact
that the Lipschitz constant grows with N (at least for the coarsest discretizations,
for which we could estimate it), such that we get closer to the stability boundary.
The main reason, however, is because of rare “bad” paths. In those, the method
initially takes a large step in the wrong direction. Theoretically, it will eventually
recover from this. In practice, it does not, due to the finite computational budget.
Even when such bad paths are omitted from the results and O(1/k)−convergence
is observed, the errors are much larger than in Figure 1. Many more steps would
be necessary to reach the same accuracy as SPI. Since our implementations are
certainly not optimal in any sense, we do not show a comparison of computational
times here. They are, however, very similar, meaning that SPI is more efficient
than SGD for this problem.
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Figure 1. Approximated errors Ek−1[∥wk − w∗∥2N ] for the SPI
method, measured in RMS-norm, for discretizations with varying
number of grid points N . Statistics were only computed at every
100 time steps, this is why the plot starts at k = 100. The 1/k-
convergence is clearly seen by comparing to the uppermost solid
black reference line.

6. Conclusions

We have rigorously proved convergence with an optimal rate for the stochastic
proximal iteration method in a general Hilbert space. This improves the analy-
sis situation in two ways. Firstly, by providing an extension of similar results in a
finite-dimensional setting to the infinite-dimensional case, as well as extending these
to more general operators. Secondly, by improving on similar infinite-dimensional
results that only achieve convergence, without any error bounds. The latter im-
provement comes at the cost of stronger assumptions on the cost functional. Global
Lipschitz continuity of the gradient is, admittedly, a rather strong assumption.
However, as we have demonstrated, this can be replaced by local Lipschitz conti-
nuity where the maximal growth of the Lipschitz constant is determined by higher
moments of the gradient applied to the minimum. This is a weaker condition. Fi-
nally, we have seen that the theoretical results are applicable also in practice, as
demonstrated by the numerical results in the previous section.
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